Impacts of smart grid data on parallel path and contingency analysis efforts

Although a desirable attribute, not all operations models currently make use of real-time data for various reasons. To say the least, the regional scope and comprehensiveness that current data encompasses may be considered limited and incomplete. However, as computational, communication, security, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Kavicky, James A
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3
container_issue
container_start_page 1
container_title
container_volume
creator Kavicky, James A
description Although a desirable attribute, not all operations models currently make use of real-time data for various reasons. To say the least, the regional scope and comprehensiveness that current data encompasses may be considered limited and incomplete. However, as computational, communication, security, and instrumentation technologies advance, smart grid technology demonstrates the potential to radically change network monitoring and data collection capabilities and advance simulation methods beyond that achievable given the current institutional environment. Because smart grid has the potential to conduct data collection in real time and to improve modeling and simulation results, potential data overload, validation, security, access, and other challenges are leading to new design opportunities. Similarly, we can expect significant impacts on system operation procedures and increased use of enhanced automation applications in operations decision making.
doi_str_mv 10.1109/PES.2010.5588144
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5588144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5588144</ieee_id><sourcerecordid>5588144</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-99b09d6eb87240be820cc2024e9a45eb715c3203cd76539bb72e2da8a1daff423</originalsourceid><addsrcrecordid>eNotkE1Lw0AYhFdUsNbeBS_7B1L3M7t7lFJrIaBg7-Xdr7qSJiG7l_x7A2YuM89lGAahZ0q2lBLz-rX_3jIyk5RaUyFu0CMVTAjNpeK3C9RSGHGHVtRwVklJ1QPa5PxLZgnJpKxXqDleB3Al4z7ifIWx4MuYPPZQAPcdHmCEtg3tHMoPhs5j13cldZfQuWlmaKecMg4x9mPJT-g-QpvDZvE1Or3vT7uPqvk8HHdvTZUMKZUxlhhfB6sVE8QGzYhzjDARDAgZrKLScUa486qW3FirWGAeNFAPMQrG1-jlvzaFEM7DmObd03k5gv8Bu2RPrw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Impacts of smart grid data on parallel path and contingency analysis efforts</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Kavicky, James A</creator><creatorcontrib>Kavicky, James A</creatorcontrib><description>Although a desirable attribute, not all operations models currently make use of real-time data for various reasons. To say the least, the regional scope and comprehensiveness that current data encompasses may be considered limited and incomplete. However, as computational, communication, security, and instrumentation technologies advance, smart grid technology demonstrates the potential to radically change network monitoring and data collection capabilities and advance simulation methods beyond that achievable given the current institutional environment. Because smart grid has the potential to conduct data collection in real time and to improve modeling and simulation results, potential data overload, validation, security, access, and other challenges are leading to new design opportunities. Similarly, we can expect significant impacts on system operation procedures and increased use of enhanced automation applications in operations decision making.</description><identifier>ISSN: 1932-5517</identifier><identifier>ISBN: 1424465494</identifier><identifier>ISBN: 9781424465491</identifier><identifier>EISBN: 1424483573</identifier><identifier>EISBN: 9781424465514</identifier><identifier>EISBN: 9781424483570</identifier><identifier>EISBN: 1424465516</identifier><identifier>EISBN: 1424465508</identifier><identifier>EISBN: 9781424465507</identifier><identifier>DOI: 10.1109/PES.2010.5588144</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Data management ; Data models ; Electric potential ; interconnected power systems ; Monitoring ; power system monitoring ; power system planning ; power system reliability ; power system security ; Security ; Smart grids</subject><ispartof>IEEE PES General Meeting, 2010, p.1-3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5588144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5588144$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kavicky, James A</creatorcontrib><title>Impacts of smart grid data on parallel path and contingency analysis efforts</title><title>IEEE PES General Meeting</title><addtitle>PES</addtitle><description>Although a desirable attribute, not all operations models currently make use of real-time data for various reasons. To say the least, the regional scope and comprehensiveness that current data encompasses may be considered limited and incomplete. However, as computational, communication, security, and instrumentation technologies advance, smart grid technology demonstrates the potential to radically change network monitoring and data collection capabilities and advance simulation methods beyond that achievable given the current institutional environment. Because smart grid has the potential to conduct data collection in real time and to improve modeling and simulation results, potential data overload, validation, security, access, and other challenges are leading to new design opportunities. Similarly, we can expect significant impacts on system operation procedures and increased use of enhanced automation applications in operations decision making.</description><subject>Computational modeling</subject><subject>Data management</subject><subject>Data models</subject><subject>Electric potential</subject><subject>interconnected power systems</subject><subject>Monitoring</subject><subject>power system monitoring</subject><subject>power system planning</subject><subject>power system reliability</subject><subject>power system security</subject><subject>Security</subject><subject>Smart grids</subject><issn>1932-5517</issn><isbn>1424465494</isbn><isbn>9781424465491</isbn><isbn>1424483573</isbn><isbn>9781424465514</isbn><isbn>9781424483570</isbn><isbn>1424465516</isbn><isbn>1424465508</isbn><isbn>9781424465507</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotkE1Lw0AYhFdUsNbeBS_7B1L3M7t7lFJrIaBg7-Xdr7qSJiG7l_x7A2YuM89lGAahZ0q2lBLz-rX_3jIyk5RaUyFu0CMVTAjNpeK3C9RSGHGHVtRwVklJ1QPa5PxLZgnJpKxXqDleB3Al4z7ifIWx4MuYPPZQAPcdHmCEtg3tHMoPhs5j13cldZfQuWlmaKecMg4x9mPJT-g-QpvDZvE1Or3vT7uPqvk8HHdvTZUMKZUxlhhfB6sVE8QGzYhzjDARDAgZrKLScUa486qW3FirWGAeNFAPMQrG1-jlvzaFEM7DmObd03k5gv8Bu2RPrw</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Kavicky, James A</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201007</creationdate><title>Impacts of smart grid data on parallel path and contingency analysis efforts</title><author>Kavicky, James A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-99b09d6eb87240be820cc2024e9a45eb715c3203cd76539bb72e2da8a1daff423</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Computational modeling</topic><topic>Data management</topic><topic>Data models</topic><topic>Electric potential</topic><topic>interconnected power systems</topic><topic>Monitoring</topic><topic>power system monitoring</topic><topic>power system planning</topic><topic>power system reliability</topic><topic>power system security</topic><topic>Security</topic><topic>Smart grids</topic><toplevel>online_resources</toplevel><creatorcontrib>Kavicky, James A</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kavicky, James A</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Impacts of smart grid data on parallel path and contingency analysis efforts</atitle><btitle>IEEE PES General Meeting</btitle><stitle>PES</stitle><date>2010-07</date><risdate>2010</risdate><spage>1</spage><epage>3</epage><pages>1-3</pages><issn>1932-5517</issn><isbn>1424465494</isbn><isbn>9781424465491</isbn><eisbn>1424483573</eisbn><eisbn>9781424465514</eisbn><eisbn>9781424483570</eisbn><eisbn>1424465516</eisbn><eisbn>1424465508</eisbn><eisbn>9781424465507</eisbn><abstract>Although a desirable attribute, not all operations models currently make use of real-time data for various reasons. To say the least, the regional scope and comprehensiveness that current data encompasses may be considered limited and incomplete. However, as computational, communication, security, and instrumentation technologies advance, smart grid technology demonstrates the potential to radically change network monitoring and data collection capabilities and advance simulation methods beyond that achievable given the current institutional environment. Because smart grid has the potential to conduct data collection in real time and to improve modeling and simulation results, potential data overload, validation, security, access, and other challenges are leading to new design opportunities. Similarly, we can expect significant impacts on system operation procedures and increased use of enhanced automation applications in operations decision making.</abstract><pub>IEEE</pub><doi>10.1109/PES.2010.5588144</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1932-5517
ispartof IEEE PES General Meeting, 2010, p.1-3
issn 1932-5517
language eng
recordid cdi_ieee_primary_5588144
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Computational modeling
Data management
Data models
Electric potential
interconnected power systems
Monitoring
power system monitoring
power system planning
power system reliability
power system security
Security
Smart grids
title Impacts of smart grid data on parallel path and contingency analysis efforts
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T19%3A46%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Impacts%20of%20smart%20grid%20data%20on%20parallel%20path%20and%20contingency%20analysis%20efforts&rft.btitle=IEEE%20PES%20General%20Meeting&rft.au=Kavicky,%20James%20A&rft.date=2010-07&rft.spage=1&rft.epage=3&rft.pages=1-3&rft.issn=1932-5517&rft.isbn=1424465494&rft.isbn_list=9781424465491&rft_id=info:doi/10.1109/PES.2010.5588144&rft_dat=%3Cieee_6IE%3E5588144%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424483573&rft.eisbn_list=9781424465514&rft.eisbn_list=9781424483570&rft.eisbn_list=1424465516&rft.eisbn_list=1424465508&rft.eisbn_list=9781424465507&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5588144&rfr_iscdi=true