Evolution and analysis of self-synthesized minimalist neural controllers for collective robotics using Pareto multi-objective optimization

In this paper, we investigate the utilization of a multi-objective approach for evolving artificial neural networks (ANNs) that act as controllers for a radio frequency (RF) based collective box-pushing task of a group of virtual E-puck robots simulated in a 3D, physics-based environment. The modifi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Chin Kim On, Teo, J
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7
container_issue
container_start_page 1
container_title
container_volume
creator Chin Kim On
Teo, J
description In this paper, we investigate the utilization of a multi-objective approach for evolving artificial neural networks (ANNs) that act as controllers for a radio frequency (RF) based collective box-pushing task of a group of virtual E-puck robots simulated in a 3D, physics-based environment. The modified Pareto-frontier Differential Evolution (PDE) algorithm is used to generate the Pareto optimal sets of ANN that optimize the conflicting objectives of maximizing the virtual E-puck robots' behaviors for pushing a box towards a wall based on RF-localization as well as minimizing the number of hidden neurons used in its feed-forward ANN controller. A new fitness function used during the collective robotics' optimization process is proposed. The experimentation results showed the virtual E-puck robots were capable of moving towards to the RF signal area. Thereafter, the robots were capable in self-assembling in the signal source area as well as completing the box-pushing towards the target wall with very small neural network architectures. Then, the genetic structures of the generated controllers have been further analyzed using the Hinton analysis. Hence, the results demonstrated that the utilization of the PDE approach in evolutionary robotics can be practically used to generate neural-based controllers for collective robotics' behaviors.
doi_str_mv 10.1109/CEC.2010.5586537
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_5586537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5586537</ieee_id><sourcerecordid>5586537</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-29361fcc0e5a47a2efbd859fe416d7eae087b6f1e9c152479fd72d7dc56037433</originalsourceid><addsrcrecordid>eNo9UMtqwzAQVF_QJO290It-wOnKlizrWEL6gEB7yKG3INurVkG2giQHkk_oV9eloYdld5hh2BlC7hjMGQP1sFgu5jmMSIiqFIU8I1PGc85LxYCfkwlTnGUAeXnxT4CCy5GASmVSVh_XZBrjFoBxwdSEfC_33g3J-p7qvh1Hu0O0kXpDIzqTxUOfvjDaI7a0s73ttLMx0R6HoB1tfJ-Cdw5DpMaHEY93k-weafC1T7aJdIi2_6TvOmDytBtcspmvtyeV3yXb2aP-feCGXBntIt6e9oysn5brxUu2ent-XTyuMqsgZbkqSmaaBlBoLnWOpm4roQxyVrYSNUIl69IwVA0TOZfKtDJvZduIEgrJi2JG7v9sLSJudmGMFA6bU5_FD9cEanY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Evolution and analysis of self-synthesized minimalist neural controllers for collective robotics using Pareto multi-objective optimization</title><source>IEEE Electronic Library (IEL)</source><creator>Chin Kim On ; Teo, J</creator><creatorcontrib>Chin Kim On ; Teo, J</creatorcontrib><description>In this paper, we investigate the utilization of a multi-objective approach for evolving artificial neural networks (ANNs) that act as controllers for a radio frequency (RF) based collective box-pushing task of a group of virtual E-puck robots simulated in a 3D, physics-based environment. The modified Pareto-frontier Differential Evolution (PDE) algorithm is used to generate the Pareto optimal sets of ANN that optimize the conflicting objectives of maximizing the virtual E-puck robots' behaviors for pushing a box towards a wall based on RF-localization as well as minimizing the number of hidden neurons used in its feed-forward ANN controller. A new fitness function used during the collective robotics' optimization process is proposed. The experimentation results showed the virtual E-puck robots were capable of moving towards to the RF signal area. Thereafter, the robots were capable in self-assembling in the signal source area as well as completing the box-pushing towards the target wall with very small neural network architectures. Then, the genetic structures of the generated controllers have been further analyzed using the Hinton analysis. Hence, the results demonstrated that the utilization of the PDE approach in evolutionary robotics can be practically used to generate neural-based controllers for collective robotics' behaviors.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424469090</identifier><identifier>ISBN: 9781424469093</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424469104</identifier><identifier>EISBN: 9781424469109</identifier><identifier>EISBN: 1424469112</identifier><identifier>EISBN: 9781424469116</identifier><identifier>DOI: 10.1109/CEC.2010.5586537</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Mobile robots ; Neurons ; Robot sensing systems ; Testing</subject><ispartof>IEEE Congress on Evolutionary Computation, 2010, p.1-7</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5586537$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,792,2051,27904,54736,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5586537$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Chin Kim On</creatorcontrib><creatorcontrib>Teo, J</creatorcontrib><title>Evolution and analysis of self-synthesized minimalist neural controllers for collective robotics using Pareto multi-objective optimization</title><title>IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>In this paper, we investigate the utilization of a multi-objective approach for evolving artificial neural networks (ANNs) that act as controllers for a radio frequency (RF) based collective box-pushing task of a group of virtual E-puck robots simulated in a 3D, physics-based environment. The modified Pareto-frontier Differential Evolution (PDE) algorithm is used to generate the Pareto optimal sets of ANN that optimize the conflicting objectives of maximizing the virtual E-puck robots' behaviors for pushing a box towards a wall based on RF-localization as well as minimizing the number of hidden neurons used in its feed-forward ANN controller. A new fitness function used during the collective robotics' optimization process is proposed. The experimentation results showed the virtual E-puck robots were capable of moving towards to the RF signal area. Thereafter, the robots were capable in self-assembling in the signal source area as well as completing the box-pushing towards the target wall with very small neural network architectures. Then, the genetic structures of the generated controllers have been further analyzed using the Hinton analysis. Hence, the results demonstrated that the utilization of the PDE approach in evolutionary robotics can be practically used to generate neural-based controllers for collective robotics' behaviors.</description><subject>Artificial neural networks</subject><subject>Mobile robots</subject><subject>Neurons</subject><subject>Robot sensing systems</subject><subject>Testing</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424469090</isbn><isbn>9781424469093</isbn><isbn>1424469104</isbn><isbn>9781424469109</isbn><isbn>1424469112</isbn><isbn>9781424469116</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9UMtqwzAQVF_QJO290It-wOnKlizrWEL6gEB7yKG3INurVkG2giQHkk_oV9eloYdld5hh2BlC7hjMGQP1sFgu5jmMSIiqFIU8I1PGc85LxYCfkwlTnGUAeXnxT4CCy5GASmVSVh_XZBrjFoBxwdSEfC_33g3J-p7qvh1Hu0O0kXpDIzqTxUOfvjDaI7a0s73ttLMx0R6HoB1tfJ-Cdw5DpMaHEY93k-weafC1T7aJdIi2_6TvOmDytBtcspmvtyeV3yXb2aP-feCGXBntIt6e9oysn5brxUu2ent-XTyuMqsgZbkqSmaaBlBoLnWOpm4roQxyVrYSNUIl69IwVA0TOZfKtDJvZduIEgrJi2JG7v9sLSJudmGMFA6bU5_FD9cEanY</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Chin Kim On</creator><creator>Teo, J</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>Evolution and analysis of self-synthesized minimalist neural controllers for collective robotics using Pareto multi-objective optimization</title><author>Chin Kim On ; Teo, J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-29361fcc0e5a47a2efbd859fe416d7eae087b6f1e9c152479fd72d7dc56037433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Mobile robots</topic><topic>Neurons</topic><topic>Robot sensing systems</topic><topic>Testing</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chin Kim On</creatorcontrib><creatorcontrib>Teo, J</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Chin Kim On</au><au>Teo, J</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Evolution and analysis of self-synthesized minimalist neural controllers for collective robotics using Pareto multi-objective optimization</atitle><btitle>IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2010-07</date><risdate>2010</risdate><spage>1</spage><epage>7</epage><pages>1-7</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424469090</isbn><isbn>9781424469093</isbn><eisbn>1424469104</eisbn><eisbn>9781424469109</eisbn><eisbn>1424469112</eisbn><eisbn>9781424469116</eisbn><abstract>In this paper, we investigate the utilization of a multi-objective approach for evolving artificial neural networks (ANNs) that act as controllers for a radio frequency (RF) based collective box-pushing task of a group of virtual E-puck robots simulated in a 3D, physics-based environment. The modified Pareto-frontier Differential Evolution (PDE) algorithm is used to generate the Pareto optimal sets of ANN that optimize the conflicting objectives of maximizing the virtual E-puck robots' behaviors for pushing a box towards a wall based on RF-localization as well as minimizing the number of hidden neurons used in its feed-forward ANN controller. A new fitness function used during the collective robotics' optimization process is proposed. The experimentation results showed the virtual E-puck robots were capable of moving towards to the RF signal area. Thereafter, the robots were capable in self-assembling in the signal source area as well as completing the box-pushing towards the target wall with very small neural network architectures. Then, the genetic structures of the generated controllers have been further analyzed using the Hinton analysis. Hence, the results demonstrated that the utilization of the PDE approach in evolutionary robotics can be practically used to generate neural-based controllers for collective robotics' behaviors.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2010.5586537</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE Congress on Evolutionary Computation, 2010, p.1-7
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_5586537
source IEEE Electronic Library (IEL)
subjects Artificial neural networks
Mobile robots
Neurons
Robot sensing systems
Testing
title Evolution and analysis of self-synthesized minimalist neural controllers for collective robotics using Pareto multi-objective optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T05%3A47%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Evolution%20and%20analysis%20of%20self-synthesized%20minimalist%20neural%20controllers%20for%20collective%20robotics%20using%20Pareto%20multi-objective%20optimization&rft.btitle=IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Chin%20Kim%20On&rft.date=2010-07&rft.spage=1&rft.epage=7&rft.pages=1-7&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424469090&rft.isbn_list=9781424469093&rft_id=info:doi/10.1109/CEC.2010.5586537&rft_dat=%3Cieee_RIE%3E5586537%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424469104&rft.eisbn_list=9781424469109&rft.eisbn_list=1424469112&rft.eisbn_list=9781424469116&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5586537&rfr_iscdi=true