The ε constrained differential evolution approach for optimal operational planning of energy plants

This paper introduces optimal operational planning of energy plants via the ε constrained differential evolution. In order to generate optimal operational planning for energy plants, startup/shutdown status and/or input/output values of the facilities at each control interval should be determined. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Suzuki, Ryohei, Kawai, Fukiko, Kitagawa, Shinji, Matsui, Tetsuro, Matsumoto, Kouji, Donghui Xiang, Fukuyama, Yoshikazu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume
creator Suzuki, Ryohei
Kawai, Fukiko
Kitagawa, Shinji
Matsui, Tetsuro
Matsumoto, Kouji
Donghui Xiang
Fukuyama, Yoshikazu
description This paper introduces optimal operational planning of energy plants via the ε constrained differential evolution. In order to generate optimal operational planning for energy plants, startup/shutdown status and/or input/output values of the facilities at each control interval should be determined. The problem can be formulated as a large-scale mixed-integer nonlinear problem (MINLP). Metaheuristics (MHs) is one of the solutions for MINLP. If the formulated MINLP has various equality and inequality constraints, it remains difficult to solve it without parameters tuning. In this paper, to overcome the difficulty, we propose an improved differential evolution approach using the ε constrained method for MINLP. Results show the effectiveness of the proposed method compared with conventional methods.
doi_str_mv 10.1109/CEC.2010.5586322
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_5586322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5586322</ieee_id><sourcerecordid>5586322</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c81c9aa02c2fdf5f89b8df5180f252c794190b4baa98848bbb738633281df5c63</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhc2fRFvYI7HxBVLGjpPYSxS1gFSJTRbsKtuxW6NgR45B6sG4BmfCQMXqzcw3Gr15CN0QWBIC4q5dtUsKuasqXpeUnqA5YZSxWhBgp2hGBCMFAK3P_gEIOM8AuCiahr9covk0vQIQVhExQ323N_jrE-vgpxSl86bHvbPWROOTkwM2H2F4Ty54LMcxBqn32IaIw5jcW8ZhNFH-4FyPg_Te-R0OFhtv4u7wO0rTFbqwcpjM9VEXqFuvuvax2Dw_PLX3m8IJSIXmRAspgWpqe1tZLhTPSjhYWlHd5NcEKKakFJwzrpRqyhxCSTnJa7ouF-j276wzxmzHmA3Gw_aYVPkN72dbdQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The ε constrained differential evolution approach for optimal operational planning of energy plants</title><source>IEEE Xplore</source><creator>Suzuki, Ryohei ; Kawai, Fukiko ; Kitagawa, Shinji ; Matsui, Tetsuro ; Matsumoto, Kouji ; Donghui Xiang ; Fukuyama, Yoshikazu</creator><creatorcontrib>Suzuki, Ryohei ; Kawai, Fukiko ; Kitagawa, Shinji ; Matsui, Tetsuro ; Matsumoto, Kouji ; Donghui Xiang ; Fukuyama, Yoshikazu</creatorcontrib><description>This paper introduces optimal operational planning of energy plants via the ε constrained differential evolution. In order to generate optimal operational planning for energy plants, startup/shutdown status and/or input/output values of the facilities at each control interval should be determined. The problem can be formulated as a large-scale mixed-integer nonlinear problem (MINLP). Metaheuristics (MHs) is one of the solutions for MINLP. If the formulated MINLP has various equality and inequality constraints, it remains difficult to solve it without parameters tuning. In this paper, to overcome the difficulty, we propose an improved differential evolution approach using the ε constrained method for MINLP. Results show the effectiveness of the proposed method compared with conventional methods.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424469090</identifier><identifier>ISBN: 9781424469093</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424469104</identifier><identifier>EISBN: 9781424469109</identifier><identifier>EISBN: 1424469112</identifier><identifier>EISBN: 9781424469116</identifier><identifier>DOI: 10.1109/CEC.2010.5586322</identifier><language>eng</language><publisher>IEEE</publisher><subject>Heat engines ; Planning ; Refrigerators ; Resistance heating ; Search problems ; Turbines</subject><ispartof>IEEE Congress on Evolutionary Computation, 2010, p.1-6</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5586322$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,2058,27925,54758,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5586322$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Suzuki, Ryohei</creatorcontrib><creatorcontrib>Kawai, Fukiko</creatorcontrib><creatorcontrib>Kitagawa, Shinji</creatorcontrib><creatorcontrib>Matsui, Tetsuro</creatorcontrib><creatorcontrib>Matsumoto, Kouji</creatorcontrib><creatorcontrib>Donghui Xiang</creatorcontrib><creatorcontrib>Fukuyama, Yoshikazu</creatorcontrib><title>The ε constrained differential evolution approach for optimal operational planning of energy plants</title><title>IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>This paper introduces optimal operational planning of energy plants via the ε constrained differential evolution. In order to generate optimal operational planning for energy plants, startup/shutdown status and/or input/output values of the facilities at each control interval should be determined. The problem can be formulated as a large-scale mixed-integer nonlinear problem (MINLP). Metaheuristics (MHs) is one of the solutions for MINLP. If the formulated MINLP has various equality and inequality constraints, it remains difficult to solve it without parameters tuning. In this paper, to overcome the difficulty, we propose an improved differential evolution approach using the ε constrained method for MINLP. Results show the effectiveness of the proposed method compared with conventional methods.</description><subject>Heat engines</subject><subject>Planning</subject><subject>Refrigerators</subject><subject>Resistance heating</subject><subject>Search problems</subject><subject>Turbines</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424469090</isbn><isbn>9781424469093</isbn><isbn>1424469104</isbn><isbn>9781424469109</isbn><isbn>1424469112</isbn><isbn>9781424469116</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1OwzAQhc2fRFvYI7HxBVLGjpPYSxS1gFSJTRbsKtuxW6NgR45B6sG4BmfCQMXqzcw3Gr15CN0QWBIC4q5dtUsKuasqXpeUnqA5YZSxWhBgp2hGBCMFAK3P_gEIOM8AuCiahr9covk0vQIQVhExQ323N_jrE-vgpxSl86bHvbPWROOTkwM2H2F4Ty54LMcxBqn32IaIw5jcW8ZhNFH-4FyPg_Te-R0OFhtv4u7wO0rTFbqwcpjM9VEXqFuvuvax2Dw_PLX3m8IJSIXmRAspgWpqe1tZLhTPSjhYWlHd5NcEKKakFJwzrpRqyhxCSTnJa7ouF-j276wzxmzHmA3Gw_aYVPkN72dbdQ</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Suzuki, Ryohei</creator><creator>Kawai, Fukiko</creator><creator>Kitagawa, Shinji</creator><creator>Matsui, Tetsuro</creator><creator>Matsumoto, Kouji</creator><creator>Donghui Xiang</creator><creator>Fukuyama, Yoshikazu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>The ε constrained differential evolution approach for optimal operational planning of energy plants</title><author>Suzuki, Ryohei ; Kawai, Fukiko ; Kitagawa, Shinji ; Matsui, Tetsuro ; Matsumoto, Kouji ; Donghui Xiang ; Fukuyama, Yoshikazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c81c9aa02c2fdf5f89b8df5180f252c794190b4baa98848bbb738633281df5c63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Heat engines</topic><topic>Planning</topic><topic>Refrigerators</topic><topic>Resistance heating</topic><topic>Search problems</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Ryohei</creatorcontrib><creatorcontrib>Kawai, Fukiko</creatorcontrib><creatorcontrib>Kitagawa, Shinji</creatorcontrib><creatorcontrib>Matsui, Tetsuro</creatorcontrib><creatorcontrib>Matsumoto, Kouji</creatorcontrib><creatorcontrib>Donghui Xiang</creatorcontrib><creatorcontrib>Fukuyama, Yoshikazu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Suzuki, Ryohei</au><au>Kawai, Fukiko</au><au>Kitagawa, Shinji</au><au>Matsui, Tetsuro</au><au>Matsumoto, Kouji</au><au>Donghui Xiang</au><au>Fukuyama, Yoshikazu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The ε constrained differential evolution approach for optimal operational planning of energy plants</atitle><btitle>IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2010-07</date><risdate>2010</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424469090</isbn><isbn>9781424469093</isbn><eisbn>1424469104</eisbn><eisbn>9781424469109</eisbn><eisbn>1424469112</eisbn><eisbn>9781424469116</eisbn><abstract>This paper introduces optimal operational planning of energy plants via the ε constrained differential evolution. In order to generate optimal operational planning for energy plants, startup/shutdown status and/or input/output values of the facilities at each control interval should be determined. The problem can be formulated as a large-scale mixed-integer nonlinear problem (MINLP). Metaheuristics (MHs) is one of the solutions for MINLP. If the formulated MINLP has various equality and inequality constraints, it remains difficult to solve it without parameters tuning. In this paper, to overcome the difficulty, we propose an improved differential evolution approach using the ε constrained method for MINLP. Results show the effectiveness of the proposed method compared with conventional methods.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2010.5586322</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE Congress on Evolutionary Computation, 2010, p.1-6
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_5586322
source IEEE Xplore
subjects Heat engines
Planning
Refrigerators
Resistance heating
Search problems
Turbines
title The ε constrained differential evolution approach for optimal operational planning of energy plants
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20%CE%B5%20constrained%20differential%20evolution%20approach%20for%20optimal%20operational%20planning%20of%20energy%20plants&rft.btitle=IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Suzuki,%20Ryohei&rft.date=2010-07&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424469090&rft.isbn_list=9781424469093&rft_id=info:doi/10.1109/CEC.2010.5586322&rft_dat=%3Cieee_RIE%3E5586322%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424469104&rft.eisbn_list=9781424469109&rft.eisbn_list=1424469112&rft.eisbn_list=9781424469116&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5586322&rfr_iscdi=true