The ε constrained differential evolution approach for optimal operational planning of energy plants
This paper introduces optimal operational planning of energy plants via the ε constrained differential evolution. In order to generate optimal operational planning for energy plants, startup/shutdown status and/or input/output values of the facilities at each control interval should be determined. T...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Suzuki, Ryohei Kawai, Fukiko Kitagawa, Shinji Matsui, Tetsuro Matsumoto, Kouji Donghui Xiang Fukuyama, Yoshikazu |
description | This paper introduces optimal operational planning of energy plants via the ε constrained differential evolution. In order to generate optimal operational planning for energy plants, startup/shutdown status and/or input/output values of the facilities at each control interval should be determined. The problem can be formulated as a large-scale mixed-integer nonlinear problem (MINLP). Metaheuristics (MHs) is one of the solutions for MINLP. If the formulated MINLP has various equality and inequality constraints, it remains difficult to solve it without parameters tuning. In this paper, to overcome the difficulty, we propose an improved differential evolution approach using the ε constrained method for MINLP. Results show the effectiveness of the proposed method compared with conventional methods. |
doi_str_mv | 10.1109/CEC.2010.5586322 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_RIE</sourceid><recordid>TN_cdi_ieee_primary_5586322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5586322</ieee_id><sourcerecordid>5586322</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c81c9aa02c2fdf5f89b8df5180f252c794190b4baa98848bbb738633281df5c63</originalsourceid><addsrcrecordid>eNo9kE1OwzAQhc2fRFvYI7HxBVLGjpPYSxS1gFSJTRbsKtuxW6NgR45B6sG4BmfCQMXqzcw3Gr15CN0QWBIC4q5dtUsKuasqXpeUnqA5YZSxWhBgp2hGBCMFAK3P_gEIOM8AuCiahr9covk0vQIQVhExQ323N_jrE-vgpxSl86bHvbPWROOTkwM2H2F4Ty54LMcxBqn32IaIw5jcW8ZhNFH-4FyPg_Te-R0OFhtv4u7wO0rTFbqwcpjM9VEXqFuvuvax2Dw_PLX3m8IJSIXmRAspgWpqe1tZLhTPSjhYWlHd5NcEKKakFJwzrpRqyhxCSTnJa7ouF-j276wzxmzHmA3Gw_aYVPkN72dbdQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The ε constrained differential evolution approach for optimal operational planning of energy plants</title><source>IEEE Xplore</source><creator>Suzuki, Ryohei ; Kawai, Fukiko ; Kitagawa, Shinji ; Matsui, Tetsuro ; Matsumoto, Kouji ; Donghui Xiang ; Fukuyama, Yoshikazu</creator><creatorcontrib>Suzuki, Ryohei ; Kawai, Fukiko ; Kitagawa, Shinji ; Matsui, Tetsuro ; Matsumoto, Kouji ; Donghui Xiang ; Fukuyama, Yoshikazu</creatorcontrib><description>This paper introduces optimal operational planning of energy plants via the ε constrained differential evolution. In order to generate optimal operational planning for energy plants, startup/shutdown status and/or input/output values of the facilities at each control interval should be determined. The problem can be formulated as a large-scale mixed-integer nonlinear problem (MINLP). Metaheuristics (MHs) is one of the solutions for MINLP. If the formulated MINLP has various equality and inequality constraints, it remains difficult to solve it without parameters tuning. In this paper, to overcome the difficulty, we propose an improved differential evolution approach using the ε constrained method for MINLP. Results show the effectiveness of the proposed method compared with conventional methods.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424469090</identifier><identifier>ISBN: 9781424469093</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424469104</identifier><identifier>EISBN: 9781424469109</identifier><identifier>EISBN: 1424469112</identifier><identifier>EISBN: 9781424469116</identifier><identifier>DOI: 10.1109/CEC.2010.5586322</identifier><language>eng</language><publisher>IEEE</publisher><subject>Heat engines ; Planning ; Refrigerators ; Resistance heating ; Search problems ; Turbines</subject><ispartof>IEEE Congress on Evolutionary Computation, 2010, p.1-6</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5586322$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,2058,27925,54758,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5586322$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Suzuki, Ryohei</creatorcontrib><creatorcontrib>Kawai, Fukiko</creatorcontrib><creatorcontrib>Kitagawa, Shinji</creatorcontrib><creatorcontrib>Matsui, Tetsuro</creatorcontrib><creatorcontrib>Matsumoto, Kouji</creatorcontrib><creatorcontrib>Donghui Xiang</creatorcontrib><creatorcontrib>Fukuyama, Yoshikazu</creatorcontrib><title>The ε constrained differential evolution approach for optimal operational planning of energy plants</title><title>IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>This paper introduces optimal operational planning of energy plants via the ε constrained differential evolution. In order to generate optimal operational planning for energy plants, startup/shutdown status and/or input/output values of the facilities at each control interval should be determined. The problem can be formulated as a large-scale mixed-integer nonlinear problem (MINLP). Metaheuristics (MHs) is one of the solutions for MINLP. If the formulated MINLP has various equality and inequality constraints, it remains difficult to solve it without parameters tuning. In this paper, to overcome the difficulty, we propose an improved differential evolution approach using the ε constrained method for MINLP. Results show the effectiveness of the proposed method compared with conventional methods.</description><subject>Heat engines</subject><subject>Planning</subject><subject>Refrigerators</subject><subject>Resistance heating</subject><subject>Search problems</subject><subject>Turbines</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424469090</isbn><isbn>9781424469093</isbn><isbn>1424469104</isbn><isbn>9781424469109</isbn><isbn>1424469112</isbn><isbn>9781424469116</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kE1OwzAQhc2fRFvYI7HxBVLGjpPYSxS1gFSJTRbsKtuxW6NgR45B6sG4BmfCQMXqzcw3Gr15CN0QWBIC4q5dtUsKuasqXpeUnqA5YZSxWhBgp2hGBCMFAK3P_gEIOM8AuCiahr9covk0vQIQVhExQ323N_jrE-vgpxSl86bHvbPWROOTkwM2H2F4Ty54LMcxBqn32IaIw5jcW8ZhNFH-4FyPg_Te-R0OFhtv4u7wO0rTFbqwcpjM9VEXqFuvuvax2Dw_PLX3m8IJSIXmRAspgWpqe1tZLhTPSjhYWlHd5NcEKKakFJwzrpRqyhxCSTnJa7ouF-j276wzxmzHmA3Gw_aYVPkN72dbdQ</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Suzuki, Ryohei</creator><creator>Kawai, Fukiko</creator><creator>Kitagawa, Shinji</creator><creator>Matsui, Tetsuro</creator><creator>Matsumoto, Kouji</creator><creator>Donghui Xiang</creator><creator>Fukuyama, Yoshikazu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>The ε constrained differential evolution approach for optimal operational planning of energy plants</title><author>Suzuki, Ryohei ; Kawai, Fukiko ; Kitagawa, Shinji ; Matsui, Tetsuro ; Matsumoto, Kouji ; Donghui Xiang ; Fukuyama, Yoshikazu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c81c9aa02c2fdf5f89b8df5180f252c794190b4baa98848bbb738633281df5c63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Heat engines</topic><topic>Planning</topic><topic>Refrigerators</topic><topic>Resistance heating</topic><topic>Search problems</topic><topic>Turbines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Suzuki, Ryohei</creatorcontrib><creatorcontrib>Kawai, Fukiko</creatorcontrib><creatorcontrib>Kitagawa, Shinji</creatorcontrib><creatorcontrib>Matsui, Tetsuro</creatorcontrib><creatorcontrib>Matsumoto, Kouji</creatorcontrib><creatorcontrib>Donghui Xiang</creatorcontrib><creatorcontrib>Fukuyama, Yoshikazu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Suzuki, Ryohei</au><au>Kawai, Fukiko</au><au>Kitagawa, Shinji</au><au>Matsui, Tetsuro</au><au>Matsumoto, Kouji</au><au>Donghui Xiang</au><au>Fukuyama, Yoshikazu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The ε constrained differential evolution approach for optimal operational planning of energy plants</atitle><btitle>IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2010-07</date><risdate>2010</risdate><spage>1</spage><epage>6</epage><pages>1-6</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424469090</isbn><isbn>9781424469093</isbn><eisbn>1424469104</eisbn><eisbn>9781424469109</eisbn><eisbn>1424469112</eisbn><eisbn>9781424469116</eisbn><abstract>This paper introduces optimal operational planning of energy plants via the ε constrained differential evolution. In order to generate optimal operational planning for energy plants, startup/shutdown status and/or input/output values of the facilities at each control interval should be determined. The problem can be formulated as a large-scale mixed-integer nonlinear problem (MINLP). Metaheuristics (MHs) is one of the solutions for MINLP. If the formulated MINLP has various equality and inequality constraints, it remains difficult to solve it without parameters tuning. In this paper, to overcome the difficulty, we propose an improved differential evolution approach using the ε constrained method for MINLP. Results show the effectiveness of the proposed method compared with conventional methods.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2010.5586322</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1089-778X |
ispartof | IEEE Congress on Evolutionary Computation, 2010, p.1-6 |
issn | 1089-778X 1941-0026 |
language | eng |
recordid | cdi_ieee_primary_5586322 |
source | IEEE Xplore |
subjects | Heat engines Planning Refrigerators Resistance heating Search problems Turbines |
title | The ε constrained differential evolution approach for optimal operational planning of energy plants |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A40%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20%CE%B5%20constrained%20differential%20evolution%20approach%20for%20optimal%20operational%20planning%20of%20energy%20plants&rft.btitle=IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Suzuki,%20Ryohei&rft.date=2010-07&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424469090&rft.isbn_list=9781424469093&rft_id=info:doi/10.1109/CEC.2010.5586322&rft_dat=%3Cieee_RIE%3E5586322%3C/ieee_RIE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424469104&rft.eisbn_list=9781424469109&rft.eisbn_list=1424469112&rft.eisbn_list=9781424469116&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5586322&rfr_iscdi=true |