A hybrid multiobjective optimization algorithm applied to space trajectory optimization

This paper presents an algorithm for multiobjective optimization that blends together a number of heuristics. A population of agents combines heuristics that aim at exploring the search space both globally and in a neighborhood of each agent. These heuristics are complemented with two restart mechan...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Vasile, Massimiliano, Zuiani, Federico
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Vasile, Massimiliano
Zuiani, Federico
description This paper presents an algorithm for multiobjective optimization that blends together a number of heuristics. A population of agents combines heuristics that aim at exploring the search space both globally and in a neighborhood of each agent. These heuristics are complemented with two restart mechanisms and a combination of a local and global archive. The hybrid algorithm is tested at first on a set of standard problems and then on three specific problems in space trajectory design. The performance of the proposed hybrid algorithm is compared against NSGA-II.
doi_str_mv 10.1109/CEC.2010.5586240
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5586240</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5586240</ieee_id><sourcerecordid>5586240</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-7bedeccb982f894cc7b26668d0990c33326f2b8070f5889660e66d65a6a812fd3</originalsourceid><addsrcrecordid>eNpVkE1Lw0AYhNcvsK3eBS_7B1Lf3Wze7B5LqB9Q8FLQW9mv2C2JCZtViL_eiEXwNMw8zByGkBsGS8ZA3VXraslhckUhkQs4IXMmuBCoGIhTMmNKsAyA49kfAAXnEwCpsrKUr5dkPgwHACYKpmbkZUX3o4nB0fajSaEzB29T-PS061Now5eesneqm7cuhrRvqe77JnhHU0eHXltPU9Q_lS6O_ypX5KLWzeCvj7og2_v1tnrMNs8PT9VqkwUFKSuNd95aoySvpRLWloYjonSgFNg8zznW3EgooS6kVIjgER0WGrVkvHb5gtz-zgbv_a6PodVx3B3Pyb8BXWBWCw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A hybrid multiobjective optimization algorithm applied to space trajectory optimization</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Vasile, Massimiliano ; Zuiani, Federico</creator><creatorcontrib>Vasile, Massimiliano ; Zuiani, Federico</creatorcontrib><description>This paper presents an algorithm for multiobjective optimization that blends together a number of heuristics. A population of agents combines heuristics that aim at exploring the search space both globally and in a neighborhood of each agent. These heuristics are complemented with two restart mechanisms and a combination of a local and global archive. The hybrid algorithm is tested at first on a set of standard problems and then on three specific problems in space trajectory design. The performance of the proposed hybrid algorithm is compared against NSGA-II.</description><identifier>ISSN: 1089-778X</identifier><identifier>ISBN: 1424469090</identifier><identifier>ISBN: 9781424469093</identifier><identifier>EISSN: 1941-0026</identifier><identifier>EISBN: 1424469104</identifier><identifier>EISBN: 9781424469109</identifier><identifier>EISBN: 1424469112</identifier><identifier>EISBN: 9781424469116</identifier><identifier>DOI: 10.1109/CEC.2010.5586240</identifier><language>eng</language><publisher>IEEE</publisher><subject>Collaboration ; Extrapolation ; Indexes ; Optimization ; Orbits ; Space missions ; Trajectory</subject><ispartof>IEEE Congress on Evolutionary Computation, 2010, p.1-8</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5586240$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,792,2052,27902,54733,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5586240$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Vasile, Massimiliano</creatorcontrib><creatorcontrib>Zuiani, Federico</creatorcontrib><title>A hybrid multiobjective optimization algorithm applied to space trajectory optimization</title><title>IEEE Congress on Evolutionary Computation</title><addtitle>CEC</addtitle><description>This paper presents an algorithm for multiobjective optimization that blends together a number of heuristics. A population of agents combines heuristics that aim at exploring the search space both globally and in a neighborhood of each agent. These heuristics are complemented with two restart mechanisms and a combination of a local and global archive. The hybrid algorithm is tested at first on a set of standard problems and then on three specific problems in space trajectory design. The performance of the proposed hybrid algorithm is compared against NSGA-II.</description><subject>Collaboration</subject><subject>Extrapolation</subject><subject>Indexes</subject><subject>Optimization</subject><subject>Orbits</subject><subject>Space missions</subject><subject>Trajectory</subject><issn>1089-778X</issn><issn>1941-0026</issn><isbn>1424469090</isbn><isbn>9781424469093</isbn><isbn>1424469104</isbn><isbn>9781424469109</isbn><isbn>1424469112</isbn><isbn>9781424469116</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkE1Lw0AYhNcvsK3eBS_7B1Lf3Wze7B5LqB9Q8FLQW9mv2C2JCZtViL_eiEXwNMw8zByGkBsGS8ZA3VXraslhckUhkQs4IXMmuBCoGIhTMmNKsAyA49kfAAXnEwCpsrKUr5dkPgwHACYKpmbkZUX3o4nB0fajSaEzB29T-PS061Now5eesneqm7cuhrRvqe77JnhHU0eHXltPU9Q_lS6O_ypX5KLWzeCvj7og2_v1tnrMNs8PT9VqkwUFKSuNd95aoySvpRLWloYjonSgFNg8zznW3EgooS6kVIjgER0WGrVkvHb5gtz-zgbv_a6PodVx3B3Pyb8BXWBWCw</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Vasile, Massimiliano</creator><creator>Zuiani, Federico</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>A hybrid multiobjective optimization algorithm applied to space trajectory optimization</title><author>Vasile, Massimiliano ; Zuiani, Federico</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-7bedeccb982f894cc7b26668d0990c33326f2b8070f5889660e66d65a6a812fd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Collaboration</topic><topic>Extrapolation</topic><topic>Indexes</topic><topic>Optimization</topic><topic>Orbits</topic><topic>Space missions</topic><topic>Trajectory</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vasile, Massimiliano</creatorcontrib><creatorcontrib>Zuiani, Federico</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Vasile, Massimiliano</au><au>Zuiani, Federico</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A hybrid multiobjective optimization algorithm applied to space trajectory optimization</atitle><btitle>IEEE Congress on Evolutionary Computation</btitle><stitle>CEC</stitle><date>2010-07</date><risdate>2010</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1089-778X</issn><eissn>1941-0026</eissn><isbn>1424469090</isbn><isbn>9781424469093</isbn><eisbn>1424469104</eisbn><eisbn>9781424469109</eisbn><eisbn>1424469112</eisbn><eisbn>9781424469116</eisbn><abstract>This paper presents an algorithm for multiobjective optimization that blends together a number of heuristics. A population of agents combines heuristics that aim at exploring the search space both globally and in a neighborhood of each agent. These heuristics are complemented with two restart mechanisms and a combination of a local and global archive. The hybrid algorithm is tested at first on a set of standard problems and then on three specific problems in space trajectory design. The performance of the proposed hybrid algorithm is compared against NSGA-II.</abstract><pub>IEEE</pub><doi>10.1109/CEC.2010.5586240</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1089-778X
ispartof IEEE Congress on Evolutionary Computation, 2010, p.1-8
issn 1089-778X
1941-0026
language eng
recordid cdi_ieee_primary_5586240
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Collaboration
Extrapolation
Indexes
Optimization
Orbits
Space missions
Trajectory
title A hybrid multiobjective optimization algorithm applied to space trajectory optimization
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T13%3A12%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20hybrid%20multiobjective%20optimization%20algorithm%20applied%20to%20space%20trajectory%20optimization&rft.btitle=IEEE%20Congress%20on%20Evolutionary%20Computation&rft.au=Vasile,%20Massimiliano&rft.date=2010-07&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1089-778X&rft.eissn=1941-0026&rft.isbn=1424469090&rft.isbn_list=9781424469093&rft_id=info:doi/10.1109/CEC.2010.5586240&rft_dat=%3Cieee_6IE%3E5586240%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424469104&rft.eisbn_list=9781424469109&rft.eisbn_list=1424469112&rft.eisbn_list=9781424469116&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5586240&rfr_iscdi=true