Skill and tactic diagnosis for table tennis matches based on artificial neural network and genetic algorithm

Due to the complexity, multiplicity and randomness of table tennis matches, the paper presents skill and tactic diagnostic model for table-tennis matches of elite athletes with artificial neural network and genetic algorithm. A back propagation network is used to build basic structure of the model a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wenwu Mao, Lijuan Yu, Hui Zhang, Peiliang Ling, Haihang Wang, Jie Wang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1851
container_issue
container_start_page 1847
container_title
container_volume 4
creator Wenwu Mao
Lijuan Yu
Hui Zhang
Peiliang Ling
Haihang Wang
Jie Wang
description Due to the complexity, multiplicity and randomness of table tennis matches, the paper presents skill and tactic diagnostic model for table-tennis matches of elite athletes with artificial neural network and genetic algorithm. A back propagation network is used to build basic structure of the model and genetic algorithm is established to optimize the connection weights and threshold values of the neural network to improve the prediction precision and congestion performance. The application results show that it is an effective tool to provide decision support for table-tennis players.
doi_str_mv 10.1109/ICNC.2010.5584534
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5584534</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5584534</ieee_id><sourcerecordid>5584534</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-a414980060958ffde15fda33977194da6c8e1a8daa2ddb15a1400779ab8c16e93</originalsourceid><addsrcrecordid>eNo9kMtOwzAURI0AiVL6AYiNfyDFN7bjeIkiHpUqWNB9dRM7qambINsI8fdYpWI1OrM4Gg0ht8CWAEzfr5rXZlmyjFLWQnJxRq5BlEJIXQE__wdZ8wsyK0GqQkspr8gixg_GGAelFNMz4t_3znuKo6EJu-Q6ahwO4xRdpP0Uctl6S5Mdx1wcMHU7G2mL0Ro6jRRDcr3rHHo62q9wjPQ9hf1RONhM2Yh-mIJLu8MNuezRR7s45Zxsnh43zUuxfnteNQ_rwmmWChQgdM1YxfL8vjcWZG-Qc60UaGGw6moLWBvE0pgWJIJgTCmNbd1BZTWfk7s_rbPWbj-DO2D42Z6O4r-KM1vm</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Skill and tactic diagnosis for table tennis matches based on artificial neural network and genetic algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wenwu Mao ; Lijuan Yu ; Hui Zhang ; Peiliang Ling ; Haihang Wang ; Jie Wang</creator><creatorcontrib>Wenwu Mao ; Lijuan Yu ; Hui Zhang ; Peiliang Ling ; Haihang Wang ; Jie Wang</creatorcontrib><description>Due to the complexity, multiplicity and randomness of table tennis matches, the paper presents skill and tactic diagnostic model for table-tennis matches of elite athletes with artificial neural network and genetic algorithm. A back propagation network is used to build basic structure of the model and genetic algorithm is established to optimize the connection weights and threshold values of the neural network to improve the prediction precision and congestion performance. The application results show that it is an effective tool to provide decision support for table-tennis players.</description><identifier>ISSN: 2157-9555</identifier><identifier>ISBN: 1424459583</identifier><identifier>ISBN: 9781424459582</identifier><identifier>EISBN: 1424459613</identifier><identifier>EISBN: 9781424459612</identifier><identifier>EISBN: 9781424459599</identifier><identifier>EISBN: 1424459591</identifier><identifier>DOI: 10.1109/ICNC.2010.5584534</identifier><language>eng</language><publisher>IEEE</publisher><subject>artificial neural network ; Artificial neural networks ; Data acquisition ; Educational institutions ; genetic algorithm ; Indexes ; Joints ; Sensitivity analysis ; skill and tactic diagnosis ; table-tennis match ; Training</subject><ispartof>2010 Sixth International Conference on Natural Computation, 2010, Vol.4, p.1847-1851</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5584534$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5584534$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wenwu Mao</creatorcontrib><creatorcontrib>Lijuan Yu</creatorcontrib><creatorcontrib>Hui Zhang</creatorcontrib><creatorcontrib>Peiliang Ling</creatorcontrib><creatorcontrib>Haihang Wang</creatorcontrib><creatorcontrib>Jie Wang</creatorcontrib><title>Skill and tactic diagnosis for table tennis matches based on artificial neural network and genetic algorithm</title><title>2010 Sixth International Conference on Natural Computation</title><addtitle>ICNC</addtitle><description>Due to the complexity, multiplicity and randomness of table tennis matches, the paper presents skill and tactic diagnostic model for table-tennis matches of elite athletes with artificial neural network and genetic algorithm. A back propagation network is used to build basic structure of the model and genetic algorithm is established to optimize the connection weights and threshold values of the neural network to improve the prediction precision and congestion performance. The application results show that it is an effective tool to provide decision support for table-tennis players.</description><subject>artificial neural network</subject><subject>Artificial neural networks</subject><subject>Data acquisition</subject><subject>Educational institutions</subject><subject>genetic algorithm</subject><subject>Indexes</subject><subject>Joints</subject><subject>Sensitivity analysis</subject><subject>skill and tactic diagnosis</subject><subject>table-tennis match</subject><subject>Training</subject><issn>2157-9555</issn><isbn>1424459583</isbn><isbn>9781424459582</isbn><isbn>1424459613</isbn><isbn>9781424459612</isbn><isbn>9781424459599</isbn><isbn>1424459591</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAURI0AiVL6AYiNfyDFN7bjeIkiHpUqWNB9dRM7qambINsI8fdYpWI1OrM4Gg0ht8CWAEzfr5rXZlmyjFLWQnJxRq5BlEJIXQE__wdZ8wsyK0GqQkspr8gixg_GGAelFNMz4t_3znuKo6EJu-Q6ahwO4xRdpP0Uctl6S5Mdx1wcMHU7G2mL0Ro6jRRDcr3rHHo62q9wjPQ9hf1RONhM2Yh-mIJLu8MNuezRR7s45Zxsnh43zUuxfnteNQ_rwmmWChQgdM1YxfL8vjcWZG-Qc60UaGGw6moLWBvE0pgWJIJgTCmNbd1BZTWfk7s_rbPWbj-DO2D42Z6O4r-KM1vm</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Wenwu Mao</creator><creator>Lijuan Yu</creator><creator>Hui Zhang</creator><creator>Peiliang Ling</creator><creator>Haihang Wang</creator><creator>Jie Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Skill and tactic diagnosis for table tennis matches based on artificial neural network and genetic algorithm</title><author>Wenwu Mao ; Lijuan Yu ; Hui Zhang ; Peiliang Ling ; Haihang Wang ; Jie Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-a414980060958ffde15fda33977194da6c8e1a8daa2ddb15a1400779ab8c16e93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>artificial neural network</topic><topic>Artificial neural networks</topic><topic>Data acquisition</topic><topic>Educational institutions</topic><topic>genetic algorithm</topic><topic>Indexes</topic><topic>Joints</topic><topic>Sensitivity analysis</topic><topic>skill and tactic diagnosis</topic><topic>table-tennis match</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Wenwu Mao</creatorcontrib><creatorcontrib>Lijuan Yu</creatorcontrib><creatorcontrib>Hui Zhang</creatorcontrib><creatorcontrib>Peiliang Ling</creatorcontrib><creatorcontrib>Haihang Wang</creatorcontrib><creatorcontrib>Jie Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wenwu Mao</au><au>Lijuan Yu</au><au>Hui Zhang</au><au>Peiliang Ling</au><au>Haihang Wang</au><au>Jie Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Skill and tactic diagnosis for table tennis matches based on artificial neural network and genetic algorithm</atitle><btitle>2010 Sixth International Conference on Natural Computation</btitle><stitle>ICNC</stitle><date>2010-08</date><risdate>2010</risdate><volume>4</volume><spage>1847</spage><epage>1851</epage><pages>1847-1851</pages><issn>2157-9555</issn><isbn>1424459583</isbn><isbn>9781424459582</isbn><eisbn>1424459613</eisbn><eisbn>9781424459612</eisbn><eisbn>9781424459599</eisbn><eisbn>1424459591</eisbn><abstract>Due to the complexity, multiplicity and randomness of table tennis matches, the paper presents skill and tactic diagnostic model for table-tennis matches of elite athletes with artificial neural network and genetic algorithm. A back propagation network is used to build basic structure of the model and genetic algorithm is established to optimize the connection weights and threshold values of the neural network to improve the prediction precision and congestion performance. The application results show that it is an effective tool to provide decision support for table-tennis players.</abstract><pub>IEEE</pub><doi>10.1109/ICNC.2010.5584534</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2157-9555
ispartof 2010 Sixth International Conference on Natural Computation, 2010, Vol.4, p.1847-1851
issn 2157-9555
language eng
recordid cdi_ieee_primary_5584534
source IEEE Electronic Library (IEL) Conference Proceedings
subjects artificial neural network
Artificial neural networks
Data acquisition
Educational institutions
genetic algorithm
Indexes
Joints
Sensitivity analysis
skill and tactic diagnosis
table-tennis match
Training
title Skill and tactic diagnosis for table tennis matches based on artificial neural network and genetic algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T01%3A53%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Skill%20and%20tactic%20diagnosis%20for%20table%20tennis%20matches%20based%20on%20artificial%20neural%20network%20and%20genetic%20algorithm&rft.btitle=2010%20Sixth%20International%20Conference%20on%20Natural%20Computation&rft.au=Wenwu%20Mao&rft.date=2010-08&rft.volume=4&rft.spage=1847&rft.epage=1851&rft.pages=1847-1851&rft.issn=2157-9555&rft.isbn=1424459583&rft.isbn_list=9781424459582&rft_id=info:doi/10.1109/ICNC.2010.5584534&rft_dat=%3Cieee_6IE%3E5584534%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424459613&rft.eisbn_list=9781424459612&rft.eisbn_list=9781424459599&rft.eisbn_list=1424459591&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5584534&rfr_iscdi=true