A type-2 fuzzy logic based model for renewable wind energy generation
The diminishing reserves of fossil fuels together with the associated environmental effects is encouraging the transition to renewable clean energy. Due to this transition, improvements took place in numerous fields related to wind energy generation. To cope with those improvements, the need emerged...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 8 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Zaher, Mina Hagras, Hani Khairy, Amr Ibrahim, Mohamed |
description | The diminishing reserves of fossil fuels together with the associated environmental effects is encouraging the transition to renewable clean energy. Due to this transition, improvements took place in numerous fields related to wind energy generation. To cope with those improvements, the need emerged to develop intelligent control mechanisms that can handle the uncertainties encountered in wind turbines. In this paper we present a novel type-2 fuzzy logic system that models wind turbines to accurately predict the extracted power. Fuzzy models in this paper were generated using data and adapted to deal with noise. The type-2 fuzzy based models were compared against the corresponding type-1 fuzzy models. Although type-1 returns precise results under ideal conditions, it cannot deal with any encountered uncertainties unlike the type-2 fuzzy model that is able to handle the encountered uncertainties to give a better model. |
doi_str_mv | 10.1109/FUZZY.2010.5584091 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5584091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5584091</ieee_id><sourcerecordid>5584091</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-92175e20f75f82dd414e96da8a4d6c2e943c179dc77bc1b4655b103da0b85ce23</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRY0AiVL6A7DxD6R4HDu2l1XVAlIlNnRBN5Ufk8goTaokqEq_HiMqZnN0RnPvYgh5BDYHYOZ5vd3tPuecJZdSC2bgityD4EIUJm2v_wWMviGTFNGZSod3ZNb3XyyNkLzQYkJWCzqMR8w4Lb_P55HWbRU9dbbHQA9twJqWbUc7bPBkXY30FJtAk3XVSKtf2iG2zQO5LW3d4-zCKdmuVx_L12zz_vK2XGyyCEoOmeEJyFmpZKl5CAIEmiJYbUUoPEcjcg_KBK-U8-BEIaUDlgfLnJYeeT4lT3-9ERH3xy4ebDfuLy_IfwD_3E11</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A type-2 fuzzy logic based model for renewable wind energy generation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zaher, Mina ; Hagras, Hani ; Khairy, Amr ; Ibrahim, Mohamed</creator><creatorcontrib>Zaher, Mina ; Hagras, Hani ; Khairy, Amr ; Ibrahim, Mohamed</creatorcontrib><description>The diminishing reserves of fossil fuels together with the associated environmental effects is encouraging the transition to renewable clean energy. Due to this transition, improvements took place in numerous fields related to wind energy generation. To cope with those improvements, the need emerged to develop intelligent control mechanisms that can handle the uncertainties encountered in wind turbines. In this paper we present a novel type-2 fuzzy logic system that models wind turbines to accurately predict the extracted power. Fuzzy models in this paper were generated using data and adapted to deal with noise. The type-2 fuzzy based models were compared against the corresponding type-1 fuzzy models. Although type-1 returns precise results under ideal conditions, it cannot deal with any encountered uncertainties unlike the type-2 fuzzy model that is able to handle the encountered uncertainties to give a better model.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 1424469198</identifier><identifier>ISBN: 9781424469192</identifier><identifier>EISBN: 1424469201</identifier><identifier>EISBN: 9781424469208</identifier><identifier>EISBN: 142446921X</identifier><identifier>EISBN: 9781424469215</identifier><identifier>DOI: 10.1109/FUZZY.2010.5584091</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>International Conference on Fuzzy Systems, 2010, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5584091$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5584091$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zaher, Mina</creatorcontrib><creatorcontrib>Hagras, Hani</creatorcontrib><creatorcontrib>Khairy, Amr</creatorcontrib><creatorcontrib>Ibrahim, Mohamed</creatorcontrib><title>A type-2 fuzzy logic based model for renewable wind energy generation</title><title>International Conference on Fuzzy Systems</title><addtitle>FUZZY</addtitle><description>The diminishing reserves of fossil fuels together with the associated environmental effects is encouraging the transition to renewable clean energy. Due to this transition, improvements took place in numerous fields related to wind energy generation. To cope with those improvements, the need emerged to develop intelligent control mechanisms that can handle the uncertainties encountered in wind turbines. In this paper we present a novel type-2 fuzzy logic system that models wind turbines to accurately predict the extracted power. Fuzzy models in this paper were generated using data and adapted to deal with noise. The type-2 fuzzy based models were compared against the corresponding type-1 fuzzy models. Although type-1 returns precise results under ideal conditions, it cannot deal with any encountered uncertainties unlike the type-2 fuzzy model that is able to handle the encountered uncertainties to give a better model.</description><issn>1098-7584</issn><isbn>1424469198</isbn><isbn>9781424469192</isbn><isbn>1424469201</isbn><isbn>9781424469208</isbn><isbn>142446921X</isbn><isbn>9781424469215</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRY0AiVL6A7DxD6R4HDu2l1XVAlIlNnRBN5Ufk8goTaokqEq_HiMqZnN0RnPvYgh5BDYHYOZ5vd3tPuecJZdSC2bgityD4EIUJm2v_wWMviGTFNGZSod3ZNb3XyyNkLzQYkJWCzqMR8w4Lb_P55HWbRU9dbbHQA9twJqWbUc7bPBkXY30FJtAk3XVSKtf2iG2zQO5LW3d4-zCKdmuVx_L12zz_vK2XGyyCEoOmeEJyFmpZKl5CAIEmiJYbUUoPEcjcg_KBK-U8-BEIaUDlgfLnJYeeT4lT3-9ERH3xy4ebDfuLy_IfwD_3E11</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Zaher, Mina</creator><creator>Hagras, Hani</creator><creator>Khairy, Amr</creator><creator>Ibrahim, Mohamed</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201007</creationdate><title>A type-2 fuzzy logic based model for renewable wind energy generation</title><author>Zaher, Mina ; Hagras, Hani ; Khairy, Amr ; Ibrahim, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-92175e20f75f82dd414e96da8a4d6c2e943c179dc77bc1b4655b103da0b85ce23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Zaher, Mina</creatorcontrib><creatorcontrib>Hagras, Hani</creatorcontrib><creatorcontrib>Khairy, Amr</creatorcontrib><creatorcontrib>Ibrahim, Mohamed</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zaher, Mina</au><au>Hagras, Hani</au><au>Khairy, Amr</au><au>Ibrahim, Mohamed</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A type-2 fuzzy logic based model for renewable wind energy generation</atitle><btitle>International Conference on Fuzzy Systems</btitle><stitle>FUZZY</stitle><date>2010-07</date><risdate>2010</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1098-7584</issn><isbn>1424469198</isbn><isbn>9781424469192</isbn><eisbn>1424469201</eisbn><eisbn>9781424469208</eisbn><eisbn>142446921X</eisbn><eisbn>9781424469215</eisbn><abstract>The diminishing reserves of fossil fuels together with the associated environmental effects is encouraging the transition to renewable clean energy. Due to this transition, improvements took place in numerous fields related to wind energy generation. To cope with those improvements, the need emerged to develop intelligent control mechanisms that can handle the uncertainties encountered in wind turbines. In this paper we present a novel type-2 fuzzy logic system that models wind turbines to accurately predict the extracted power. Fuzzy models in this paper were generated using data and adapted to deal with noise. The type-2 fuzzy based models were compared against the corresponding type-1 fuzzy models. Although type-1 returns precise results under ideal conditions, it cannot deal with any encountered uncertainties unlike the type-2 fuzzy model that is able to handle the encountered uncertainties to give a better model.</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.2010.5584091</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1098-7584 |
ispartof | International Conference on Fuzzy Systems, 2010, p.1-8 |
issn | 1098-7584 |
language | eng |
recordid | cdi_ieee_primary_5584091 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
title | A type-2 fuzzy logic based model for renewable wind energy generation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20type-2%20fuzzy%20logic%20based%20model%20for%20renewable%20wind%20energy%20generation&rft.btitle=International%20Conference%20on%20Fuzzy%20Systems&rft.au=Zaher,%20Mina&rft.date=2010-07&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1098-7584&rft.isbn=1424469198&rft.isbn_list=9781424469192&rft_id=info:doi/10.1109/FUZZY.2010.5584091&rft_dat=%3Cieee_6IE%3E5584091%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424469201&rft.eisbn_list=9781424469208&rft.eisbn_list=142446921X&rft.eisbn_list=9781424469215&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5584091&rfr_iscdi=true |