A type-2 fuzzy logic based model for renewable wind energy generation

The diminishing reserves of fossil fuels together with the associated environmental effects is encouraging the transition to renewable clean energy. Due to this transition, improvements took place in numerous fields related to wind energy generation. To cope with those improvements, the need emerged...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zaher, Mina, Hagras, Hani, Khairy, Amr, Ibrahim, Mohamed
Format: Tagungsbericht
Sprache:eng
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Zaher, Mina
Hagras, Hani
Khairy, Amr
Ibrahim, Mohamed
description The diminishing reserves of fossil fuels together with the associated environmental effects is encouraging the transition to renewable clean energy. Due to this transition, improvements took place in numerous fields related to wind energy generation. To cope with those improvements, the need emerged to develop intelligent control mechanisms that can handle the uncertainties encountered in wind turbines. In this paper we present a novel type-2 fuzzy logic system that models wind turbines to accurately predict the extracted power. Fuzzy models in this paper were generated using data and adapted to deal with noise. The type-2 fuzzy based models were compared against the corresponding type-1 fuzzy models. Although type-1 returns precise results under ideal conditions, it cannot deal with any encountered uncertainties unlike the type-2 fuzzy model that is able to handle the encountered uncertainties to give a better model.
doi_str_mv 10.1109/FUZZY.2010.5584091
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5584091</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5584091</ieee_id><sourcerecordid>5584091</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-92175e20f75f82dd414e96da8a4d6c2e943c179dc77bc1b4655b103da0b85ce23</originalsourceid><addsrcrecordid>eNo9kMtOwzAQRY0AiVL6A7DxD6R4HDu2l1XVAlIlNnRBN5Ufk8goTaokqEq_HiMqZnN0RnPvYgh5BDYHYOZ5vd3tPuecJZdSC2bgityD4EIUJm2v_wWMviGTFNGZSod3ZNb3XyyNkLzQYkJWCzqMR8w4Lb_P55HWbRU9dbbHQA9twJqWbUc7bPBkXY30FJtAk3XVSKtf2iG2zQO5LW3d4-zCKdmuVx_L12zz_vK2XGyyCEoOmeEJyFmpZKl5CAIEmiJYbUUoPEcjcg_KBK-U8-BEIaUDlgfLnJYeeT4lT3-9ERH3xy4ebDfuLy_IfwD_3E11</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A type-2 fuzzy logic based model for renewable wind energy generation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zaher, Mina ; Hagras, Hani ; Khairy, Amr ; Ibrahim, Mohamed</creator><creatorcontrib>Zaher, Mina ; Hagras, Hani ; Khairy, Amr ; Ibrahim, Mohamed</creatorcontrib><description>The diminishing reserves of fossil fuels together with the associated environmental effects is encouraging the transition to renewable clean energy. Due to this transition, improvements took place in numerous fields related to wind energy generation. To cope with those improvements, the need emerged to develop intelligent control mechanisms that can handle the uncertainties encountered in wind turbines. In this paper we present a novel type-2 fuzzy logic system that models wind turbines to accurately predict the extracted power. Fuzzy models in this paper were generated using data and adapted to deal with noise. The type-2 fuzzy based models were compared against the corresponding type-1 fuzzy models. Although type-1 returns precise results under ideal conditions, it cannot deal with any encountered uncertainties unlike the type-2 fuzzy model that is able to handle the encountered uncertainties to give a better model.</description><identifier>ISSN: 1098-7584</identifier><identifier>ISBN: 1424469198</identifier><identifier>ISBN: 9781424469192</identifier><identifier>EISBN: 1424469201</identifier><identifier>EISBN: 9781424469208</identifier><identifier>EISBN: 142446921X</identifier><identifier>EISBN: 9781424469215</identifier><identifier>DOI: 10.1109/FUZZY.2010.5584091</identifier><language>eng</language><publisher>IEEE</publisher><ispartof>International Conference on Fuzzy Systems, 2010, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5584091$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5584091$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zaher, Mina</creatorcontrib><creatorcontrib>Hagras, Hani</creatorcontrib><creatorcontrib>Khairy, Amr</creatorcontrib><creatorcontrib>Ibrahim, Mohamed</creatorcontrib><title>A type-2 fuzzy logic based model for renewable wind energy generation</title><title>International Conference on Fuzzy Systems</title><addtitle>FUZZY</addtitle><description>The diminishing reserves of fossil fuels together with the associated environmental effects is encouraging the transition to renewable clean energy. Due to this transition, improvements took place in numerous fields related to wind energy generation. To cope with those improvements, the need emerged to develop intelligent control mechanisms that can handle the uncertainties encountered in wind turbines. In this paper we present a novel type-2 fuzzy logic system that models wind turbines to accurately predict the extracted power. Fuzzy models in this paper were generated using data and adapted to deal with noise. The type-2 fuzzy based models were compared against the corresponding type-1 fuzzy models. Although type-1 returns precise results under ideal conditions, it cannot deal with any encountered uncertainties unlike the type-2 fuzzy model that is able to handle the encountered uncertainties to give a better model.</description><issn>1098-7584</issn><isbn>1424469198</isbn><isbn>9781424469192</isbn><isbn>1424469201</isbn><isbn>9781424469208</isbn><isbn>142446921X</isbn><isbn>9781424469215</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9kMtOwzAQRY0AiVL6A7DxD6R4HDu2l1XVAlIlNnRBN5Ufk8goTaokqEq_HiMqZnN0RnPvYgh5BDYHYOZ5vd3tPuecJZdSC2bgityD4EIUJm2v_wWMviGTFNGZSod3ZNb3XyyNkLzQYkJWCzqMR8w4Lb_P55HWbRU9dbbHQA9twJqWbUc7bPBkXY30FJtAk3XVSKtf2iG2zQO5LW3d4-zCKdmuVx_L12zz_vK2XGyyCEoOmeEJyFmpZKl5CAIEmiJYbUUoPEcjcg_KBK-U8-BEIaUDlgfLnJYeeT4lT3-9ERH3xy4ebDfuLy_IfwD_3E11</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Zaher, Mina</creator><creator>Hagras, Hani</creator><creator>Khairy, Amr</creator><creator>Ibrahim, Mohamed</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201007</creationdate><title>A type-2 fuzzy logic based model for renewable wind energy generation</title><author>Zaher, Mina ; Hagras, Hani ; Khairy, Amr ; Ibrahim, Mohamed</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-92175e20f75f82dd414e96da8a4d6c2e943c179dc77bc1b4655b103da0b85ce23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Zaher, Mina</creatorcontrib><creatorcontrib>Hagras, Hani</creatorcontrib><creatorcontrib>Khairy, Amr</creatorcontrib><creatorcontrib>Ibrahim, Mohamed</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zaher, Mina</au><au>Hagras, Hani</au><au>Khairy, Amr</au><au>Ibrahim, Mohamed</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A type-2 fuzzy logic based model for renewable wind energy generation</atitle><btitle>International Conference on Fuzzy Systems</btitle><stitle>FUZZY</stitle><date>2010-07</date><risdate>2010</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><issn>1098-7584</issn><isbn>1424469198</isbn><isbn>9781424469192</isbn><eisbn>1424469201</eisbn><eisbn>9781424469208</eisbn><eisbn>142446921X</eisbn><eisbn>9781424469215</eisbn><abstract>The diminishing reserves of fossil fuels together with the associated environmental effects is encouraging the transition to renewable clean energy. Due to this transition, improvements took place in numerous fields related to wind energy generation. To cope with those improvements, the need emerged to develop intelligent control mechanisms that can handle the uncertainties encountered in wind turbines. In this paper we present a novel type-2 fuzzy logic system that models wind turbines to accurately predict the extracted power. Fuzzy models in this paper were generated using data and adapted to deal with noise. The type-2 fuzzy based models were compared against the corresponding type-1 fuzzy models. Although type-1 returns precise results under ideal conditions, it cannot deal with any encountered uncertainties unlike the type-2 fuzzy model that is able to handle the encountered uncertainties to give a better model.</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.2010.5584091</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1098-7584
ispartof International Conference on Fuzzy Systems, 2010, p.1-8
issn 1098-7584
language eng
recordid cdi_ieee_primary_5584091
source IEEE Electronic Library (IEL) Conference Proceedings
title A type-2 fuzzy logic based model for renewable wind energy generation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T12%3A55%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20type-2%20fuzzy%20logic%20based%20model%20for%20renewable%20wind%20energy%20generation&rft.btitle=International%20Conference%20on%20Fuzzy%20Systems&rft.au=Zaher,%20Mina&rft.date=2010-07&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.issn=1098-7584&rft.isbn=1424469198&rft.isbn_list=9781424469192&rft_id=info:doi/10.1109/FUZZY.2010.5584091&rft_dat=%3Cieee_6IE%3E5584091%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424469201&rft.eisbn_list=9781424469208&rft.eisbn_list=142446921X&rft.eisbn_list=9781424469215&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5584091&rfr_iscdi=true