Singleton arc consistency based on failure-first principle
Constraint satisfaction problems play a significant role in the field of Artificial Intelligence. Reducing the search space can improve the efficiency of solving the problems before the search of solutions. Applying in preprocessing step, arc consistency technique can remove some values which are ar...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 991 |
---|---|
container_issue | |
container_start_page | 987 |
container_title | |
container_volume | 2 |
creator | Zhan-Shan Li Shi-Mei Xing Feng-Jie Yang Hui-Ying Du |
description | Constraint satisfaction problems play a significant role in the field of Artificial Intelligence. Reducing the search space can improve the efficiency of solving the problems before the search of solutions. Applying in preprocessing step, arc consistency technique can remove some values which are arc inconsistent, so that it can reduce the search space. Using heuristic strategies can improve the efficiency of the algorithms. In this paper we propose a new singleton arc consistency algorithm based on failure-first principle, which improves the practical time efficiency through the earlier detection of variables which contain null values and removal of the values which are arc inconsistency during the preprocessing step. |
doi_str_mv | 10.1109/ICMLC.2010.5580616 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5580616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5580616</ieee_id><sourcerecordid>5580616</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ce6fea75b763f13294e328169203d1c81fea91d7a0c568914cadeaacafa8fe5a3</originalsourceid><addsrcrecordid>eNpVj81KAzEUhSMqWOq8gG7yAlNz8zeJOxn8KYy4sAt35TZzI5ExLZNx0bd3wG48m8Phg3M4jN2AWAEIf7duX7t2JcWcjXHCgj1jlW8caKm1NdKY83_Zygu2kGBFDUp9XLGqlC8xSxsJ3izY_XvKnwNN-8xxDDzsc0llohyOfIeFej6DiGn4GamOaSwTP4wph3QY6JpdRhwKVSdfss3T46Z9qbu353X70NXJi6kOZCNhY3aNVRGU9JqUdGC9FKqH4GCmHvoGRTDWedABe0IMGNFFMqiW7PavNhHRdl7_xvG4PZ1Xv-I3TAg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Singleton arc consistency based on failure-first principle</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhan-Shan Li ; Shi-Mei Xing ; Feng-Jie Yang ; Hui-Ying Du</creator><creatorcontrib>Zhan-Shan Li ; Shi-Mei Xing ; Feng-Jie Yang ; Hui-Ying Du</creatorcontrib><description>Constraint satisfaction problems play a significant role in the field of Artificial Intelligence. Reducing the search space can improve the efficiency of solving the problems before the search of solutions. Applying in preprocessing step, arc consistency technique can remove some values which are arc inconsistent, so that it can reduce the search space. Using heuristic strategies can improve the efficiency of the algorithms. In this paper we propose a new singleton arc consistency algorithm based on failure-first principle, which improves the practical time efficiency through the earlier detection of variables which contain null values and removal of the values which are arc inconsistency during the preprocessing step.</description><identifier>ISSN: 2160-133X</identifier><identifier>ISBN: 9781424465262</identifier><identifier>ISBN: 1424465265</identifier><identifier>EISBN: 9781424465255</identifier><identifier>EISBN: 1424465273</identifier><identifier>EISBN: 1424465257</identifier><identifier>EISBN: 9781424465279</identifier><identifier>DOI: 10.1109/ICMLC.2010.5580616</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Arc consistency technique ; Constraint satisfaction problem ; Cybernetics ; Fail first principle ; Heuristic algorithms ; Inference algorithms ; Machine learning ; Machine learning algorithms ; Singleton arc consistency</subject><ispartof>2010 International Conference on Machine Learning and Cybernetics, 2010, Vol.2, p.987-991</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5580616$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5580616$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhan-Shan Li</creatorcontrib><creatorcontrib>Shi-Mei Xing</creatorcontrib><creatorcontrib>Feng-Jie Yang</creatorcontrib><creatorcontrib>Hui-Ying Du</creatorcontrib><title>Singleton arc consistency based on failure-first principle</title><title>2010 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>Constraint satisfaction problems play a significant role in the field of Artificial Intelligence. Reducing the search space can improve the efficiency of solving the problems before the search of solutions. Applying in preprocessing step, arc consistency technique can remove some values which are arc inconsistent, so that it can reduce the search space. Using heuristic strategies can improve the efficiency of the algorithms. In this paper we propose a new singleton arc consistency algorithm based on failure-first principle, which improves the practical time efficiency through the earlier detection of variables which contain null values and removal of the values which are arc inconsistency during the preprocessing step.</description><subject>Algorithm design and analysis</subject><subject>Arc consistency technique</subject><subject>Constraint satisfaction problem</subject><subject>Cybernetics</subject><subject>Fail first principle</subject><subject>Heuristic algorithms</subject><subject>Inference algorithms</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Singleton arc consistency</subject><issn>2160-133X</issn><isbn>9781424465262</isbn><isbn>1424465265</isbn><isbn>9781424465255</isbn><isbn>1424465273</isbn><isbn>1424465257</isbn><isbn>9781424465279</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj81KAzEUhSMqWOq8gG7yAlNz8zeJOxn8KYy4sAt35TZzI5ExLZNx0bd3wG48m8Phg3M4jN2AWAEIf7duX7t2JcWcjXHCgj1jlW8caKm1NdKY83_Zygu2kGBFDUp9XLGqlC8xSxsJ3izY_XvKnwNN-8xxDDzsc0llohyOfIeFej6DiGn4GamOaSwTP4wph3QY6JpdRhwKVSdfss3T46Z9qbu353X70NXJi6kOZCNhY3aNVRGU9JqUdGC9FKqH4GCmHvoGRTDWedABe0IMGNFFMqiW7PavNhHRdl7_xvG4PZ1Xv-I3TAg</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Zhan-Shan Li</creator><creator>Shi-Mei Xing</creator><creator>Feng-Jie Yang</creator><creator>Hui-Ying Du</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>Singleton arc consistency based on failure-first principle</title><author>Zhan-Shan Li ; Shi-Mei Xing ; Feng-Jie Yang ; Hui-Ying Du</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ce6fea75b763f13294e328169203d1c81fea91d7a0c568914cadeaacafa8fe5a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithm design and analysis</topic><topic>Arc consistency technique</topic><topic>Constraint satisfaction problem</topic><topic>Cybernetics</topic><topic>Fail first principle</topic><topic>Heuristic algorithms</topic><topic>Inference algorithms</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Singleton arc consistency</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhan-Shan Li</creatorcontrib><creatorcontrib>Shi-Mei Xing</creatorcontrib><creatorcontrib>Feng-Jie Yang</creatorcontrib><creatorcontrib>Hui-Ying Du</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhan-Shan Li</au><au>Shi-Mei Xing</au><au>Feng-Jie Yang</au><au>Hui-Ying Du</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Singleton arc consistency based on failure-first principle</atitle><btitle>2010 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2010-07</date><risdate>2010</risdate><volume>2</volume><spage>987</spage><epage>991</epage><pages>987-991</pages><issn>2160-133X</issn><isbn>9781424465262</isbn><isbn>1424465265</isbn><eisbn>9781424465255</eisbn><eisbn>1424465273</eisbn><eisbn>1424465257</eisbn><eisbn>9781424465279</eisbn><abstract>Constraint satisfaction problems play a significant role in the field of Artificial Intelligence. Reducing the search space can improve the efficiency of solving the problems before the search of solutions. Applying in preprocessing step, arc consistency technique can remove some values which are arc inconsistent, so that it can reduce the search space. Using heuristic strategies can improve the efficiency of the algorithms. In this paper we propose a new singleton arc consistency algorithm based on failure-first principle, which improves the practical time efficiency through the earlier detection of variables which contain null values and removal of the values which are arc inconsistency during the preprocessing step.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2010.5580616</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2160-133X |
ispartof | 2010 International Conference on Machine Learning and Cybernetics, 2010, Vol.2, p.987-991 |
issn | 2160-133X |
language | eng |
recordid | cdi_ieee_primary_5580616 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Arc consistency technique Constraint satisfaction problem Cybernetics Fail first principle Heuristic algorithms Inference algorithms Machine learning Machine learning algorithms Singleton arc consistency |
title | Singleton arc consistency based on failure-first principle |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Singleton%20arc%20consistency%20based%20on%20failure-first%20principle&rft.btitle=2010%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Zhan-Shan%20Li&rft.date=2010-07&rft.volume=2&rft.spage=987&rft.epage=991&rft.pages=987-991&rft.issn=2160-133X&rft.isbn=9781424465262&rft.isbn_list=1424465265&rft_id=info:doi/10.1109/ICMLC.2010.5580616&rft_dat=%3Cieee_6IE%3E5580616%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424465255&rft.eisbn_list=1424465273&rft.eisbn_list=1424465257&rft.eisbn_list=9781424465279&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5580616&rfr_iscdi=true |