Singleton arc consistency based on failure-first principle

Constraint satisfaction problems play a significant role in the field of Artificial Intelligence. Reducing the search space can improve the efficiency of solving the problems before the search of solutions. Applying in preprocessing step, arc consistency technique can remove some values which are ar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhan-Shan Li, Shi-Mei Xing, Feng-Jie Yang, Hui-Ying Du
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 991
container_issue
container_start_page 987
container_title
container_volume 2
creator Zhan-Shan Li
Shi-Mei Xing
Feng-Jie Yang
Hui-Ying Du
description Constraint satisfaction problems play a significant role in the field of Artificial Intelligence. Reducing the search space can improve the efficiency of solving the problems before the search of solutions. Applying in preprocessing step, arc consistency technique can remove some values which are arc inconsistent, so that it can reduce the search space. Using heuristic strategies can improve the efficiency of the algorithms. In this paper we propose a new singleton arc consistency algorithm based on failure-first principle, which improves the practical time efficiency through the earlier detection of variables which contain null values and removal of the values which are arc inconsistency during the preprocessing step.
doi_str_mv 10.1109/ICMLC.2010.5580616
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5580616</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5580616</ieee_id><sourcerecordid>5580616</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-ce6fea75b763f13294e328169203d1c81fea91d7a0c568914cadeaacafa8fe5a3</originalsourceid><addsrcrecordid>eNpVj81KAzEUhSMqWOq8gG7yAlNz8zeJOxn8KYy4sAt35TZzI5ExLZNx0bd3wG48m8Phg3M4jN2AWAEIf7duX7t2JcWcjXHCgj1jlW8caKm1NdKY83_Zygu2kGBFDUp9XLGqlC8xSxsJ3izY_XvKnwNN-8xxDDzsc0llohyOfIeFej6DiGn4GamOaSwTP4wph3QY6JpdRhwKVSdfss3T46Z9qbu353X70NXJi6kOZCNhY3aNVRGU9JqUdGC9FKqH4GCmHvoGRTDWedABe0IMGNFFMqiW7PavNhHRdl7_xvG4PZ1Xv-I3TAg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Singleton arc consistency based on failure-first principle</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhan-Shan Li ; Shi-Mei Xing ; Feng-Jie Yang ; Hui-Ying Du</creator><creatorcontrib>Zhan-Shan Li ; Shi-Mei Xing ; Feng-Jie Yang ; Hui-Ying Du</creatorcontrib><description>Constraint satisfaction problems play a significant role in the field of Artificial Intelligence. Reducing the search space can improve the efficiency of solving the problems before the search of solutions. Applying in preprocessing step, arc consistency technique can remove some values which are arc inconsistent, so that it can reduce the search space. Using heuristic strategies can improve the efficiency of the algorithms. In this paper we propose a new singleton arc consistency algorithm based on failure-first principle, which improves the practical time efficiency through the earlier detection of variables which contain null values and removal of the values which are arc inconsistency during the preprocessing step.</description><identifier>ISSN: 2160-133X</identifier><identifier>ISBN: 9781424465262</identifier><identifier>ISBN: 1424465265</identifier><identifier>EISBN: 9781424465255</identifier><identifier>EISBN: 1424465273</identifier><identifier>EISBN: 1424465257</identifier><identifier>EISBN: 9781424465279</identifier><identifier>DOI: 10.1109/ICMLC.2010.5580616</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Arc consistency technique ; Constraint satisfaction problem ; Cybernetics ; Fail first principle ; Heuristic algorithms ; Inference algorithms ; Machine learning ; Machine learning algorithms ; Singleton arc consistency</subject><ispartof>2010 International Conference on Machine Learning and Cybernetics, 2010, Vol.2, p.987-991</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5580616$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5580616$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhan-Shan Li</creatorcontrib><creatorcontrib>Shi-Mei Xing</creatorcontrib><creatorcontrib>Feng-Jie Yang</creatorcontrib><creatorcontrib>Hui-Ying Du</creatorcontrib><title>Singleton arc consistency based on failure-first principle</title><title>2010 International Conference on Machine Learning and Cybernetics</title><addtitle>ICMLC</addtitle><description>Constraint satisfaction problems play a significant role in the field of Artificial Intelligence. Reducing the search space can improve the efficiency of solving the problems before the search of solutions. Applying in preprocessing step, arc consistency technique can remove some values which are arc inconsistent, so that it can reduce the search space. Using heuristic strategies can improve the efficiency of the algorithms. In this paper we propose a new singleton arc consistency algorithm based on failure-first principle, which improves the practical time efficiency through the earlier detection of variables which contain null values and removal of the values which are arc inconsistency during the preprocessing step.</description><subject>Algorithm design and analysis</subject><subject>Arc consistency technique</subject><subject>Constraint satisfaction problem</subject><subject>Cybernetics</subject><subject>Fail first principle</subject><subject>Heuristic algorithms</subject><subject>Inference algorithms</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Singleton arc consistency</subject><issn>2160-133X</issn><isbn>9781424465262</isbn><isbn>1424465265</isbn><isbn>9781424465255</isbn><isbn>1424465273</isbn><isbn>1424465257</isbn><isbn>9781424465279</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVj81KAzEUhSMqWOq8gG7yAlNz8zeJOxn8KYy4sAt35TZzI5ExLZNx0bd3wG48m8Phg3M4jN2AWAEIf7duX7t2JcWcjXHCgj1jlW8caKm1NdKY83_Zygu2kGBFDUp9XLGqlC8xSxsJ3izY_XvKnwNN-8xxDDzsc0llohyOfIeFej6DiGn4GamOaSwTP4wph3QY6JpdRhwKVSdfss3T46Z9qbu353X70NXJi6kOZCNhY3aNVRGU9JqUdGC9FKqH4GCmHvoGRTDWedABe0IMGNFFMqiW7PavNhHRdl7_xvG4PZ1Xv-I3TAg</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Zhan-Shan Li</creator><creator>Shi-Mei Xing</creator><creator>Feng-Jie Yang</creator><creator>Hui-Ying Du</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>Singleton arc consistency based on failure-first principle</title><author>Zhan-Shan Li ; Shi-Mei Xing ; Feng-Jie Yang ; Hui-Ying Du</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-ce6fea75b763f13294e328169203d1c81fea91d7a0c568914cadeaacafa8fe5a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithm design and analysis</topic><topic>Arc consistency technique</topic><topic>Constraint satisfaction problem</topic><topic>Cybernetics</topic><topic>Fail first principle</topic><topic>Heuristic algorithms</topic><topic>Inference algorithms</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Singleton arc consistency</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhan-Shan Li</creatorcontrib><creatorcontrib>Shi-Mei Xing</creatorcontrib><creatorcontrib>Feng-Jie Yang</creatorcontrib><creatorcontrib>Hui-Ying Du</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhan-Shan Li</au><au>Shi-Mei Xing</au><au>Feng-Jie Yang</au><au>Hui-Ying Du</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Singleton arc consistency based on failure-first principle</atitle><btitle>2010 International Conference on Machine Learning and Cybernetics</btitle><stitle>ICMLC</stitle><date>2010-07</date><risdate>2010</risdate><volume>2</volume><spage>987</spage><epage>991</epage><pages>987-991</pages><issn>2160-133X</issn><isbn>9781424465262</isbn><isbn>1424465265</isbn><eisbn>9781424465255</eisbn><eisbn>1424465273</eisbn><eisbn>1424465257</eisbn><eisbn>9781424465279</eisbn><abstract>Constraint satisfaction problems play a significant role in the field of Artificial Intelligence. Reducing the search space can improve the efficiency of solving the problems before the search of solutions. Applying in preprocessing step, arc consistency technique can remove some values which are arc inconsistent, so that it can reduce the search space. Using heuristic strategies can improve the efficiency of the algorithms. In this paper we propose a new singleton arc consistency algorithm based on failure-first principle, which improves the practical time efficiency through the earlier detection of variables which contain null values and removal of the values which are arc inconsistency during the preprocessing step.</abstract><pub>IEEE</pub><doi>10.1109/ICMLC.2010.5580616</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2160-133X
ispartof 2010 International Conference on Machine Learning and Cybernetics, 2010, Vol.2, p.987-991
issn 2160-133X
language eng
recordid cdi_ieee_primary_5580616
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Arc consistency technique
Constraint satisfaction problem
Cybernetics
Fail first principle
Heuristic algorithms
Inference algorithms
Machine learning
Machine learning algorithms
Singleton arc consistency
title Singleton arc consistency based on failure-first principle
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T22%3A44%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Singleton%20arc%20consistency%20based%20on%20failure-first%20principle&rft.btitle=2010%20International%20Conference%20on%20Machine%20Learning%20and%20Cybernetics&rft.au=Zhan-Shan%20Li&rft.date=2010-07&rft.volume=2&rft.spage=987&rft.epage=991&rft.pages=987-991&rft.issn=2160-133X&rft.isbn=9781424465262&rft.isbn_list=1424465265&rft_id=info:doi/10.1109/ICMLC.2010.5580616&rft_dat=%3Cieee_6IE%3E5580616%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424465255&rft.eisbn_list=1424465273&rft.eisbn_list=1424465257&rft.eisbn_list=9781424465279&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5580616&rfr_iscdi=true