Task-Specific Generalization of Discrete and Periodic Dynamic Movement Primitives
Acquisition of new sensorimotor knowledge by imitation is a promising paradigm for robot learning. To be effective, action learning should not be limited to direct replication of movements obtained during training but must also enable the generation of actions in situations a robot has never encount...
Gespeichert in:
Veröffentlicht in: | IEEE transactions on robotics 2010-10, Vol.26 (5), p.800-815 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 815 |
---|---|
container_issue | 5 |
container_start_page | 800 |
container_title | IEEE transactions on robotics |
container_volume | 26 |
creator | Ude, Aleš Gams, Andrej Asfour, Tamim Morimoto, Jun |
description | Acquisition of new sensorimotor knowledge by imitation is a promising paradigm for robot learning. To be effective, action learning should not be limited to direct replication of movements obtained during training but must also enable the generation of actions in situations a robot has never encountered before. This paper describes a methodology that enables the generalization of the available sensorimotor knowledge. New actions are synthesized by the application of statistical methods, where the goal and other characteristics of an action are utilized as queries to create a suitable control policy, taking into account the current state of the world. Nonlinear dynamic systems are employed as a motor representation. The proposed approach enables the generation of a wide range of policies without requiring an expert to modify the underlying representations to account for different task-specific features and perceptual feedback. The paper also demonstrates that the proposed methodology can be integrated with an active vision system of a humanoid robot. 3-D vision data are used to provide query points for statistical generalization. While 3-D vision on humanoid robots with complex oculomotor systems is often difficult due to the modeling uncertainties, we show that these uncertainties can be accounted for by the proposed approach. |
doi_str_mv | 10.1109/TRO.2010.2065430 |
format | Article |
fullrecord | <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5580104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5580104</ieee_id><sourcerecordid>2164392421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-7ec83455bcb438799525491a2253172a946ae55a2ec40bbbe721804da7658763</originalsourceid><addsrcrecordid>eNpdkMtLAzEQxhdRUKt3wcsiiKfVvCabHMU3VHztPWTTWYjuoybbQv3rTWnx4GlmmN98fPNl2Qkll5QSfVW9v1wykiZGJAhOdrIDqgUtiJBqN_UArOBEq_3sMMZPQpjQhB9kb5WNX8XHHJ1vvMsfsMdgW_9jRz_0-dDktz66gCPmtp_lrxj8MEvc7aq3XarPwxI77Mf8NfjOj36J8Sjba2wb8XhbJ1l1f1fdPBbTl4enm-tp4YSEsSjRKS4AalcLrkqtgYHQ1DIGnJbMaiEtAliGTpC6rrFkVBExs6UEVUo-yS42svMwfC8wjqZLTrFtbY_DIhrFKQXJtErk2T_yc1iEPnkzJSjJmJRrObKBXBhiDNiYefrIhpWhxKwDNilgsw7YbANOJ-dbXRudbZtge-fj3x3jTCcQEne64Twi_q0BVBIT_BeJK4II</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>758622666</pqid></control><display><type>article</type><title>Task-Specific Generalization of Discrete and Periodic Dynamic Movement Primitives</title><source>IEEE Electronic Library (IEL)</source><creator>Ude, Aleš ; Gams, Andrej ; Asfour, Tamim ; Morimoto, Jun</creator><creatorcontrib>Ude, Aleš ; Gams, Andrej ; Asfour, Tamim ; Morimoto, Jun</creatorcontrib><description>Acquisition of new sensorimotor knowledge by imitation is a promising paradigm for robot learning. To be effective, action learning should not be limited to direct replication of movements obtained during training but must also enable the generation of actions in situations a robot has never encountered before. This paper describes a methodology that enables the generalization of the available sensorimotor knowledge. New actions are synthesized by the application of statistical methods, where the goal and other characteristics of an action are utilized as queries to create a suitable control policy, taking into account the current state of the world. Nonlinear dynamic systems are employed as a motor representation. The proposed approach enables the generation of a wide range of policies without requiring an expert to modify the underlying representations to account for different task-specific features and perceptual feedback. The paper also demonstrates that the proposed methodology can be integrated with an active vision system of a humanoid robot. 3-D vision data are used to provide query points for statistical generalization. While 3-D vision on humanoid robots with complex oculomotor systems is often difficult due to the modeling uncertainties, we show that these uncertainties can be accounted for by the proposed approach.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2010.2065430</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>3-D technology ; Active vision on humanoid robots ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Control theory. Systems ; Dynamical systems ; Equations ; Exact sciences and technology ; Hidden Markov models ; Humanoid ; humanoid robots ; imitation learning ; Information processing ; learning and adaptive systems ; Mathematical model ; Methodology ; Nonlinear dynamics ; Pattern recognition. Digital image processing. Computational geometry ; Policies ; Queries ; Representations ; Robotics ; Robots ; Theoretical computing ; Training ; Trajectory ; Uncertainty</subject><ispartof>IEEE transactions on robotics, 2010-10, Vol.26 (5), p.800-815</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-7ec83455bcb438799525491a2253172a946ae55a2ec40bbbe721804da7658763</citedby><cites>FETCH-LOGICAL-c465t-7ec83455bcb438799525491a2253172a946ae55a2ec40bbbe721804da7658763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5580104$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5580104$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23296545$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ude, Aleš</creatorcontrib><creatorcontrib>Gams, Andrej</creatorcontrib><creatorcontrib>Asfour, Tamim</creatorcontrib><creatorcontrib>Morimoto, Jun</creatorcontrib><title>Task-Specific Generalization of Discrete and Periodic Dynamic Movement Primitives</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Acquisition of new sensorimotor knowledge by imitation is a promising paradigm for robot learning. To be effective, action learning should not be limited to direct replication of movements obtained during training but must also enable the generation of actions in situations a robot has never encountered before. This paper describes a methodology that enables the generalization of the available sensorimotor knowledge. New actions are synthesized by the application of statistical methods, where the goal and other characteristics of an action are utilized as queries to create a suitable control policy, taking into account the current state of the world. Nonlinear dynamic systems are employed as a motor representation. The proposed approach enables the generation of a wide range of policies without requiring an expert to modify the underlying representations to account for different task-specific features and perceptual feedback. The paper also demonstrates that the proposed methodology can be integrated with an active vision system of a humanoid robot. 3-D vision data are used to provide query points for statistical generalization. While 3-D vision on humanoid robots with complex oculomotor systems is often difficult due to the modeling uncertainties, we show that these uncertainties can be accounted for by the proposed approach.</description><subject>3-D technology</subject><subject>Active vision on humanoid robots</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Dynamical systems</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Hidden Markov models</subject><subject>Humanoid</subject><subject>humanoid robots</subject><subject>imitation learning</subject><subject>Information processing</subject><subject>learning and adaptive systems</subject><subject>Mathematical model</subject><subject>Methodology</subject><subject>Nonlinear dynamics</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Policies</subject><subject>Queries</subject><subject>Representations</subject><subject>Robotics</subject><subject>Robots</subject><subject>Theoretical computing</subject><subject>Training</subject><subject>Trajectory</subject><subject>Uncertainty</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtLAzEQxhdRUKt3wcsiiKfVvCabHMU3VHztPWTTWYjuoybbQv3rTWnx4GlmmN98fPNl2Qkll5QSfVW9v1wykiZGJAhOdrIDqgUtiJBqN_UArOBEq_3sMMZPQpjQhB9kb5WNX8XHHJ1vvMsfsMdgW_9jRz_0-dDktz66gCPmtp_lrxj8MEvc7aq3XarPwxI77Mf8NfjOj36J8Sjba2wb8XhbJ1l1f1fdPBbTl4enm-tp4YSEsSjRKS4AalcLrkqtgYHQ1DIGnJbMaiEtAliGTpC6rrFkVBExs6UEVUo-yS42svMwfC8wjqZLTrFtbY_DIhrFKQXJtErk2T_yc1iEPnkzJSjJmJRrObKBXBhiDNiYefrIhpWhxKwDNilgsw7YbANOJ-dbXRudbZtge-fj3x3jTCcQEne64Twi_q0BVBIT_BeJK4II</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Ude, Aleš</creator><creator>Gams, Andrej</creator><creator>Asfour, Tamim</creator><creator>Morimoto, Jun</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20101001</creationdate><title>Task-Specific Generalization of Discrete and Periodic Dynamic Movement Primitives</title><author>Ude, Aleš ; Gams, Andrej ; Asfour, Tamim ; Morimoto, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-7ec83455bcb438799525491a2253172a946ae55a2ec40bbbe721804da7658763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>3-D technology</topic><topic>Active vision on humanoid robots</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Dynamical systems</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Hidden Markov models</topic><topic>Humanoid</topic><topic>humanoid robots</topic><topic>imitation learning</topic><topic>Information processing</topic><topic>learning and adaptive systems</topic><topic>Mathematical model</topic><topic>Methodology</topic><topic>Nonlinear dynamics</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Policies</topic><topic>Queries</topic><topic>Representations</topic><topic>Robotics</topic><topic>Robots</topic><topic>Theoretical computing</topic><topic>Training</topic><topic>Trajectory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ude, Aleš</creatorcontrib><creatorcontrib>Gams, Andrej</creatorcontrib><creatorcontrib>Asfour, Tamim</creatorcontrib><creatorcontrib>Morimoto, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ude, Aleš</au><au>Gams, Andrej</au><au>Asfour, Tamim</au><au>Morimoto, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task-Specific Generalization of Discrete and Periodic Dynamic Movement Primitives</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>26</volume><issue>5</issue><spage>800</spage><epage>815</epage><pages>800-815</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Acquisition of new sensorimotor knowledge by imitation is a promising paradigm for robot learning. To be effective, action learning should not be limited to direct replication of movements obtained during training but must also enable the generation of actions in situations a robot has never encountered before. This paper describes a methodology that enables the generalization of the available sensorimotor knowledge. New actions are synthesized by the application of statistical methods, where the goal and other characteristics of an action are utilized as queries to create a suitable control policy, taking into account the current state of the world. Nonlinear dynamic systems are employed as a motor representation. The proposed approach enables the generation of a wide range of policies without requiring an expert to modify the underlying representations to account for different task-specific features and perceptual feedback. The paper also demonstrates that the proposed methodology can be integrated with an active vision system of a humanoid robot. 3-D vision data are used to provide query points for statistical generalization. While 3-D vision on humanoid robots with complex oculomotor systems is often difficult due to the modeling uncertainties, we show that these uncertainties can be accounted for by the proposed approach.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TRO.2010.2065430</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1552-3098 |
ispartof | IEEE transactions on robotics, 2010-10, Vol.26 (5), p.800-815 |
issn | 1552-3098 1941-0468 |
language | eng |
recordid | cdi_ieee_primary_5580104 |
source | IEEE Electronic Library (IEL) |
subjects | 3-D technology Active vision on humanoid robots Algorithmics. Computability. Computer arithmetics Applied sciences Artificial intelligence Computer science control theory systems Control theory. Systems Dynamical systems Equations Exact sciences and technology Hidden Markov models Humanoid humanoid robots imitation learning Information processing learning and adaptive systems Mathematical model Methodology Nonlinear dynamics Pattern recognition. Digital image processing. Computational geometry Policies Queries Representations Robotics Robots Theoretical computing Training Trajectory Uncertainty |
title | Task-Specific Generalization of Discrete and Periodic Dynamic Movement Primitives |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task-Specific%20Generalization%20of%20Discrete%20and%20Periodic%20Dynamic%20Movement%20Primitives&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Ude,%20Ales%CC%8C&rft.date=2010-10-01&rft.volume=26&rft.issue=5&rft.spage=800&rft.epage=815&rft.pages=800-815&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2010.2065430&rft_dat=%3Cproquest_RIE%3E2164392421%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=758622666&rft_id=info:pmid/&rft_ieee_id=5580104&rfr_iscdi=true |