Task-Specific Generalization of Discrete and Periodic Dynamic Movement Primitives

Acquisition of new sensorimotor knowledge by imitation is a promising paradigm for robot learning. To be effective, action learning should not be limited to direct replication of movements obtained during training but must also enable the generation of actions in situations a robot has never encount...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on robotics 2010-10, Vol.26 (5), p.800-815
Hauptverfasser: Ude, Aleš, Gams, Andrej, Asfour, Tamim, Morimoto, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 815
container_issue 5
container_start_page 800
container_title IEEE transactions on robotics
container_volume 26
creator Ude, Aleš
Gams, Andrej
Asfour, Tamim
Morimoto, Jun
description Acquisition of new sensorimotor knowledge by imitation is a promising paradigm for robot learning. To be effective, action learning should not be limited to direct replication of movements obtained during training but must also enable the generation of actions in situations a robot has never encountered before. This paper describes a methodology that enables the generalization of the available sensorimotor knowledge. New actions are synthesized by the application of statistical methods, where the goal and other characteristics of an action are utilized as queries to create a suitable control policy, taking into account the current state of the world. Nonlinear dynamic systems are employed as a motor representation. The proposed approach enables the generation of a wide range of policies without requiring an expert to modify the underlying representations to account for different task-specific features and perceptual feedback. The paper also demonstrates that the proposed methodology can be integrated with an active vision system of a humanoid robot. 3-D vision data are used to provide query points for statistical generalization. While 3-D vision on humanoid robots with complex oculomotor systems is often difficult due to the modeling uncertainties, we show that these uncertainties can be accounted for by the proposed approach.
doi_str_mv 10.1109/TRO.2010.2065430
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5580104</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5580104</ieee_id><sourcerecordid>2164392421</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-7ec83455bcb438799525491a2253172a946ae55a2ec40bbbe721804da7658763</originalsourceid><addsrcrecordid>eNpdkMtLAzEQxhdRUKt3wcsiiKfVvCabHMU3VHztPWTTWYjuoybbQv3rTWnx4GlmmN98fPNl2Qkll5QSfVW9v1wykiZGJAhOdrIDqgUtiJBqN_UArOBEq_3sMMZPQpjQhB9kb5WNX8XHHJ1vvMsfsMdgW_9jRz_0-dDktz66gCPmtp_lrxj8MEvc7aq3XarPwxI77Mf8NfjOj36J8Sjba2wb8XhbJ1l1f1fdPBbTl4enm-tp4YSEsSjRKS4AalcLrkqtgYHQ1DIGnJbMaiEtAliGTpC6rrFkVBExs6UEVUo-yS42svMwfC8wjqZLTrFtbY_DIhrFKQXJtErk2T_yc1iEPnkzJSjJmJRrObKBXBhiDNiYefrIhpWhxKwDNilgsw7YbANOJ-dbXRudbZtge-fj3x3jTCcQEne64Twi_q0BVBIT_BeJK4II</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>758622666</pqid></control><display><type>article</type><title>Task-Specific Generalization of Discrete and Periodic Dynamic Movement Primitives</title><source>IEEE Electronic Library (IEL)</source><creator>Ude, Aleš ; Gams, Andrej ; Asfour, Tamim ; Morimoto, Jun</creator><creatorcontrib>Ude, Aleš ; Gams, Andrej ; Asfour, Tamim ; Morimoto, Jun</creatorcontrib><description>Acquisition of new sensorimotor knowledge by imitation is a promising paradigm for robot learning. To be effective, action learning should not be limited to direct replication of movements obtained during training but must also enable the generation of actions in situations a robot has never encountered before. This paper describes a methodology that enables the generalization of the available sensorimotor knowledge. New actions are synthesized by the application of statistical methods, where the goal and other characteristics of an action are utilized as queries to create a suitable control policy, taking into account the current state of the world. Nonlinear dynamic systems are employed as a motor representation. The proposed approach enables the generation of a wide range of policies without requiring an expert to modify the underlying representations to account for different task-specific features and perceptual feedback. The paper also demonstrates that the proposed methodology can be integrated with an active vision system of a humanoid robot. 3-D vision data are used to provide query points for statistical generalization. While 3-D vision on humanoid robots with complex oculomotor systems is often difficult due to the modeling uncertainties, we show that these uncertainties can be accounted for by the proposed approach.</description><identifier>ISSN: 1552-3098</identifier><identifier>EISSN: 1941-0468</identifier><identifier>DOI: 10.1109/TRO.2010.2065430</identifier><identifier>CODEN: ITREAE</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>3-D technology ; Active vision on humanoid robots ; Algorithmics. Computability. Computer arithmetics ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Control theory. Systems ; Dynamical systems ; Equations ; Exact sciences and technology ; Hidden Markov models ; Humanoid ; humanoid robots ; imitation learning ; Information processing ; learning and adaptive systems ; Mathematical model ; Methodology ; Nonlinear dynamics ; Pattern recognition. Digital image processing. Computational geometry ; Policies ; Queries ; Representations ; Robotics ; Robots ; Theoretical computing ; Training ; Trajectory ; Uncertainty</subject><ispartof>IEEE transactions on robotics, 2010-10, Vol.26 (5), p.800-815</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-7ec83455bcb438799525491a2253172a946ae55a2ec40bbbe721804da7658763</citedby><cites>FETCH-LOGICAL-c465t-7ec83455bcb438799525491a2253172a946ae55a2ec40bbbe721804da7658763</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5580104$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27901,27902,54733</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5580104$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23296545$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Ude, Aleš</creatorcontrib><creatorcontrib>Gams, Andrej</creatorcontrib><creatorcontrib>Asfour, Tamim</creatorcontrib><creatorcontrib>Morimoto, Jun</creatorcontrib><title>Task-Specific Generalization of Discrete and Periodic Dynamic Movement Primitives</title><title>IEEE transactions on robotics</title><addtitle>TRO</addtitle><description>Acquisition of new sensorimotor knowledge by imitation is a promising paradigm for robot learning. To be effective, action learning should not be limited to direct replication of movements obtained during training but must also enable the generation of actions in situations a robot has never encountered before. This paper describes a methodology that enables the generalization of the available sensorimotor knowledge. New actions are synthesized by the application of statistical methods, where the goal and other characteristics of an action are utilized as queries to create a suitable control policy, taking into account the current state of the world. Nonlinear dynamic systems are employed as a motor representation. The proposed approach enables the generation of a wide range of policies without requiring an expert to modify the underlying representations to account for different task-specific features and perceptual feedback. The paper also demonstrates that the proposed methodology can be integrated with an active vision system of a humanoid robot. 3-D vision data are used to provide query points for statistical generalization. While 3-D vision on humanoid robots with complex oculomotor systems is often difficult due to the modeling uncertainties, we show that these uncertainties can be accounted for by the proposed approach.</description><subject>3-D technology</subject><subject>Active vision on humanoid robots</subject><subject>Algorithmics. Computability. Computer arithmetics</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Control theory. Systems</subject><subject>Dynamical systems</subject><subject>Equations</subject><subject>Exact sciences and technology</subject><subject>Hidden Markov models</subject><subject>Humanoid</subject><subject>humanoid robots</subject><subject>imitation learning</subject><subject>Information processing</subject><subject>learning and adaptive systems</subject><subject>Mathematical model</subject><subject>Methodology</subject><subject>Nonlinear dynamics</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Policies</subject><subject>Queries</subject><subject>Representations</subject><subject>Robotics</subject><subject>Robots</subject><subject>Theoretical computing</subject><subject>Training</subject><subject>Trajectory</subject><subject>Uncertainty</subject><issn>1552-3098</issn><issn>1941-0468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtLAzEQxhdRUKt3wcsiiKfVvCabHMU3VHztPWTTWYjuoybbQv3rTWnx4GlmmN98fPNl2Qkll5QSfVW9v1wykiZGJAhOdrIDqgUtiJBqN_UArOBEq_3sMMZPQpjQhB9kb5WNX8XHHJ1vvMsfsMdgW_9jRz_0-dDktz66gCPmtp_lrxj8MEvc7aq3XarPwxI77Mf8NfjOj36J8Sjba2wb8XhbJ1l1f1fdPBbTl4enm-tp4YSEsSjRKS4AalcLrkqtgYHQ1DIGnJbMaiEtAliGTpC6rrFkVBExs6UEVUo-yS42svMwfC8wjqZLTrFtbY_DIhrFKQXJtErk2T_yc1iEPnkzJSjJmJRrObKBXBhiDNiYefrIhpWhxKwDNilgsw7YbANOJ-dbXRudbZtge-fj3x3jTCcQEne64Twi_q0BVBIT_BeJK4II</recordid><startdate>20101001</startdate><enddate>20101001</enddate><creator>Ude, Aleš</creator><creator>Gams, Andrej</creator><creator>Asfour, Tamim</creator><creator>Morimoto, Jun</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope></search><sort><creationdate>20101001</creationdate><title>Task-Specific Generalization of Discrete and Periodic Dynamic Movement Primitives</title><author>Ude, Aleš ; Gams, Andrej ; Asfour, Tamim ; Morimoto, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-7ec83455bcb438799525491a2253172a946ae55a2ec40bbbe721804da7658763</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>3-D technology</topic><topic>Active vision on humanoid robots</topic><topic>Algorithmics. Computability. Computer arithmetics</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Control theory. Systems</topic><topic>Dynamical systems</topic><topic>Equations</topic><topic>Exact sciences and technology</topic><topic>Hidden Markov models</topic><topic>Humanoid</topic><topic>humanoid robots</topic><topic>imitation learning</topic><topic>Information processing</topic><topic>learning and adaptive systems</topic><topic>Mathematical model</topic><topic>Methodology</topic><topic>Nonlinear dynamics</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Policies</topic><topic>Queries</topic><topic>Representations</topic><topic>Robotics</topic><topic>Robots</topic><topic>Theoretical computing</topic><topic>Training</topic><topic>Trajectory</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ude, Aleš</creatorcontrib><creatorcontrib>Gams, Andrej</creatorcontrib><creatorcontrib>Asfour, Tamim</creatorcontrib><creatorcontrib>Morimoto, Jun</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on robotics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ude, Aleš</au><au>Gams, Andrej</au><au>Asfour, Tamim</au><au>Morimoto, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Task-Specific Generalization of Discrete and Periodic Dynamic Movement Primitives</atitle><jtitle>IEEE transactions on robotics</jtitle><stitle>TRO</stitle><date>2010-10-01</date><risdate>2010</risdate><volume>26</volume><issue>5</issue><spage>800</spage><epage>815</epage><pages>800-815</pages><issn>1552-3098</issn><eissn>1941-0468</eissn><coden>ITREAE</coden><abstract>Acquisition of new sensorimotor knowledge by imitation is a promising paradigm for robot learning. To be effective, action learning should not be limited to direct replication of movements obtained during training but must also enable the generation of actions in situations a robot has never encountered before. This paper describes a methodology that enables the generalization of the available sensorimotor knowledge. New actions are synthesized by the application of statistical methods, where the goal and other characteristics of an action are utilized as queries to create a suitable control policy, taking into account the current state of the world. Nonlinear dynamic systems are employed as a motor representation. The proposed approach enables the generation of a wide range of policies without requiring an expert to modify the underlying representations to account for different task-specific features and perceptual feedback. The paper also demonstrates that the proposed methodology can be integrated with an active vision system of a humanoid robot. 3-D vision data are used to provide query points for statistical generalization. While 3-D vision on humanoid robots with complex oculomotor systems is often difficult due to the modeling uncertainties, we show that these uncertainties can be accounted for by the proposed approach.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TRO.2010.2065430</doi><tpages>16</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1552-3098
ispartof IEEE transactions on robotics, 2010-10, Vol.26 (5), p.800-815
issn 1552-3098
1941-0468
language eng
recordid cdi_ieee_primary_5580104
source IEEE Electronic Library (IEL)
subjects 3-D technology
Active vision on humanoid robots
Algorithmics. Computability. Computer arithmetics
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Control theory. Systems
Dynamical systems
Equations
Exact sciences and technology
Hidden Markov models
Humanoid
humanoid robots
imitation learning
Information processing
learning and adaptive systems
Mathematical model
Methodology
Nonlinear dynamics
Pattern recognition. Digital image processing. Computational geometry
Policies
Queries
Representations
Robotics
Robots
Theoretical computing
Training
Trajectory
Uncertainty
title Task-Specific Generalization of Discrete and Periodic Dynamic Movement Primitives
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T20%3A49%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Task-Specific%20Generalization%20of%20Discrete%20and%20Periodic%20Dynamic%20Movement%20Primitives&rft.jtitle=IEEE%20transactions%20on%20robotics&rft.au=Ude,%20Ales%CC%8C&rft.date=2010-10-01&rft.volume=26&rft.issue=5&rft.spage=800&rft.epage=815&rft.pages=800-815&rft.issn=1552-3098&rft.eissn=1941-0468&rft.coden=ITREAE&rft_id=info:doi/10.1109/TRO.2010.2065430&rft_dat=%3Cproquest_RIE%3E2164392421%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=758622666&rft_id=info:pmid/&rft_ieee_id=5580104&rfr_iscdi=true