Applying Feature Selection for Effective Classification of Microcalcification Clusters in Mammograms

Classification of benign and malignant microcalcification clusters (MCC) in mammograms plays an essential role for early detection of breast cancer in computer aided diagnosis (CAD) systems, where feature selection is desirable to improve both the efficiency and robustness of the classifiers. In thi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dong Wang, Jinchang Ren, Jianmin Jiang, Ipson, Stan S
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1387
container_issue
container_start_page 1384
container_title
container_volume
creator Dong Wang
Jinchang Ren
Jianmin Jiang
Ipson, Stan S
description Classification of benign and malignant microcalcification clusters (MCC) in mammograms plays an essential role for early detection of breast cancer in computer aided diagnosis (CAD) systems, where feature selection is desirable to improve both the efficiency and robustness of the classifiers. In this paper, three approaches are applied for this task, including feature selection using a neural classifier, a clustering criterion and a combined scheme. To evaluate the performance of these feature selection approaches, a same neural classifier is then applied using the selected features and the classification results are then compared. In our dataset in total 748 MCC samples are detained from the well-known DDSM database, where 39 features are extracted for each sample. Comprehensive experiments with quantitative evaluations have demonstrated that the best classification rate can be achieved using 15-20 selected features. Also it is found that applying features selected from clustering rules can yield better performance in separate and combined scheme.
doi_str_mv 10.1109/CIT.2010.247
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5577844</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5577844</ieee_id><sourcerecordid>5577844</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-b194a45dcae38a4fe64478d0ac57298ee1435817152cc832bca7bf5cf5a6c6e23</originalsourceid><addsrcrecordid>eNpFjstqwzAURFVKoU2aXXfd6AecSrKey2CSNpDQRb0P1_JVEPiF7BTy93Uf0NVwZphhCHnibM05cy_FvlwLNpOQ5oYsmNFOSc6suyULLoWURkmT35PVOMaKCW20sso9kHozDM01dme6Q5guCekHNuin2Hc09IluQ_imT6RFA3M3RA8_YR_oMfrUe2j8v1s0l3HCNNLY0SO0bX9O0I6P5C5AM-LqT5ek3G3L4i07vL_ui80hi45NWcWdBKlqD5hbkAH1_NrWDLwywllELnNlueFKeG9zUXkwVVA-KNBeo8iX5Pl3NiLiaUixhXQ9KWWMlTL_AlOPVvQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Applying Feature Selection for Effective Classification of Microcalcification Clusters in Mammograms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dong Wang ; Jinchang Ren ; Jianmin Jiang ; Ipson, Stan S</creator><creatorcontrib>Dong Wang ; Jinchang Ren ; Jianmin Jiang ; Ipson, Stan S</creatorcontrib><description>Classification of benign and malignant microcalcification clusters (MCC) in mammograms plays an essential role for early detection of breast cancer in computer aided diagnosis (CAD) systems, where feature selection is desirable to improve both the efficiency and robustness of the classifiers. In this paper, three approaches are applied for this task, including feature selection using a neural classifier, a clustering criterion and a combined scheme. To evaluate the performance of these feature selection approaches, a same neural classifier is then applied using the selected features and the classification results are then compared. In our dataset in total 748 MCC samples are detained from the well-known DDSM database, where 39 features are extracted for each sample. Comprehensive experiments with quantitative evaluations have demonstrated that the best classification rate can be achieved using 15-20 selected features. Also it is found that applying features selected from clustering rules can yield better performance in separate and combined scheme.</description><identifier>ISBN: 1424475473</identifier><identifier>ISBN: 9781424475476</identifier><identifier>EISBN: 0769541089</identifier><identifier>EISBN: 9781424475483</identifier><identifier>EISBN: 9780769541082</identifier><identifier>EISBN: 1424475481</identifier><identifier>DOI: 10.1109/CIT.2010.247</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Breast cancer ; classification ; Feature extraction ; feature selection ; Indexes ; mammogram ; Mammography</subject><ispartof>2010 10th IEEE International Conference on Computer and Information Technology, 2010, p.1384-1387</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5577844$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27903,54897</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5577844$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dong Wang</creatorcontrib><creatorcontrib>Jinchang Ren</creatorcontrib><creatorcontrib>Jianmin Jiang</creatorcontrib><creatorcontrib>Ipson, Stan S</creatorcontrib><title>Applying Feature Selection for Effective Classification of Microcalcification Clusters in Mammograms</title><title>2010 10th IEEE International Conference on Computer and Information Technology</title><addtitle>CIT</addtitle><description>Classification of benign and malignant microcalcification clusters (MCC) in mammograms plays an essential role for early detection of breast cancer in computer aided diagnosis (CAD) systems, where feature selection is desirable to improve both the efficiency and robustness of the classifiers. In this paper, three approaches are applied for this task, including feature selection using a neural classifier, a clustering criterion and a combined scheme. To evaluate the performance of these feature selection approaches, a same neural classifier is then applied using the selected features and the classification results are then compared. In our dataset in total 748 MCC samples are detained from the well-known DDSM database, where 39 features are extracted for each sample. Comprehensive experiments with quantitative evaluations have demonstrated that the best classification rate can be achieved using 15-20 selected features. Also it is found that applying features selected from clustering rules can yield better performance in separate and combined scheme.</description><subject>Artificial neural networks</subject><subject>Breast cancer</subject><subject>classification</subject><subject>Feature extraction</subject><subject>feature selection</subject><subject>Indexes</subject><subject>mammogram</subject><subject>Mammography</subject><isbn>1424475473</isbn><isbn>9781424475476</isbn><isbn>0769541089</isbn><isbn>9781424475483</isbn><isbn>9780769541082</isbn><isbn>1424475481</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFjstqwzAURFVKoU2aXXfd6AecSrKey2CSNpDQRb0P1_JVEPiF7BTy93Uf0NVwZphhCHnibM05cy_FvlwLNpOQ5oYsmNFOSc6suyULLoWURkmT35PVOMaKCW20sso9kHozDM01dme6Q5guCekHNuin2Hc09IluQ_imT6RFA3M3RA8_YR_oMfrUe2j8v1s0l3HCNNLY0SO0bX9O0I6P5C5AM-LqT5ek3G3L4i07vL_ui80hi45NWcWdBKlqD5hbkAH1_NrWDLwywllELnNlueFKeG9zUXkwVVA-KNBeo8iX5Pl3NiLiaUixhXQ9KWWMlTL_AlOPVvQ</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Dong Wang</creator><creator>Jinchang Ren</creator><creator>Jianmin Jiang</creator><creator>Ipson, Stan S</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201006</creationdate><title>Applying Feature Selection for Effective Classification of Microcalcification Clusters in Mammograms</title><author>Dong Wang ; Jinchang Ren ; Jianmin Jiang ; Ipson, Stan S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-b194a45dcae38a4fe64478d0ac57298ee1435817152cc832bca7bf5cf5a6c6e23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Breast cancer</topic><topic>classification</topic><topic>Feature extraction</topic><topic>feature selection</topic><topic>Indexes</topic><topic>mammogram</topic><topic>Mammography</topic><toplevel>online_resources</toplevel><creatorcontrib>Dong Wang</creatorcontrib><creatorcontrib>Jinchang Ren</creatorcontrib><creatorcontrib>Jianmin Jiang</creatorcontrib><creatorcontrib>Ipson, Stan S</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dong Wang</au><au>Jinchang Ren</au><au>Jianmin Jiang</au><au>Ipson, Stan S</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Applying Feature Selection for Effective Classification of Microcalcification Clusters in Mammograms</atitle><btitle>2010 10th IEEE International Conference on Computer and Information Technology</btitle><stitle>CIT</stitle><date>2010-06</date><risdate>2010</risdate><spage>1384</spage><epage>1387</epage><pages>1384-1387</pages><isbn>1424475473</isbn><isbn>9781424475476</isbn><eisbn>0769541089</eisbn><eisbn>9781424475483</eisbn><eisbn>9780769541082</eisbn><eisbn>1424475481</eisbn><abstract>Classification of benign and malignant microcalcification clusters (MCC) in mammograms plays an essential role for early detection of breast cancer in computer aided diagnosis (CAD) systems, where feature selection is desirable to improve both the efficiency and robustness of the classifiers. In this paper, three approaches are applied for this task, including feature selection using a neural classifier, a clustering criterion and a combined scheme. To evaluate the performance of these feature selection approaches, a same neural classifier is then applied using the selected features and the classification results are then compared. In our dataset in total 748 MCC samples are detained from the well-known DDSM database, where 39 features are extracted for each sample. Comprehensive experiments with quantitative evaluations have demonstrated that the best classification rate can be achieved using 15-20 selected features. Also it is found that applying features selected from clustering rules can yield better performance in separate and combined scheme.</abstract><pub>IEEE</pub><doi>10.1109/CIT.2010.247</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424475473
ispartof 2010 10th IEEE International Conference on Computer and Information Technology, 2010, p.1384-1387
issn
language eng
recordid cdi_ieee_primary_5577844
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Breast cancer
classification
Feature extraction
feature selection
Indexes
mammogram
Mammography
title Applying Feature Selection for Effective Classification of Microcalcification Clusters in Mammograms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T08%3A26%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Applying%20Feature%20Selection%20for%20Effective%20Classification%20of%20Microcalcification%20Clusters%20in%20Mammograms&rft.btitle=2010%2010th%20IEEE%20International%20Conference%20on%20Computer%20and%20Information%20Technology&rft.au=Dong%20Wang&rft.date=2010-06&rft.spage=1384&rft.epage=1387&rft.pages=1384-1387&rft.isbn=1424475473&rft.isbn_list=9781424475476&rft_id=info:doi/10.1109/CIT.2010.247&rft_dat=%3Cieee_6IE%3E5577844%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769541089&rft.eisbn_list=9781424475483&rft.eisbn_list=9780769541082&rft.eisbn_list=1424475481&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5577844&rfr_iscdi=true