A new method for the fault diagnosis of the train wheelset based on characteristic spectrum analysis

In the view of the fact that the information of the fault characteristic of the train wheelset is submerged into the background noises and the conventional spectral analysis method has its own deficiency due to the fuzzy spectrum value created by the load variation and rotation speed fluctuation, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhang, Jian, Zhou, Shaowu, Huang, Cailun
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3992
container_issue
container_start_page 3988
container_title
container_volume
creator Zhang, Jian
Zhou, Shaowu
Huang, Cailun
description In the view of the fact that the information of the fault characteristic of the train wheelset is submerged into the background noises and the conventional spectral analysis method has its own deficiency due to the fuzzy spectrum value created by the load variation and rotation speed fluctuation, a method of full period and uniform angle sampling is applied, which transfers the vibration signal from time domain into angular domain. The angular domain signal is transferred into corresponding characteristic spectrum using FFT. Through spectrum estimation and analysis, fault characteristic spectrum values of train wheelset components are acquired to distinguish their faults. The application indicates the method can distinguish the faults of train wheelset accurately and efficiently.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5572987</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5572987</ieee_id><sourcerecordid>5572987</sourcerecordid><originalsourceid>FETCH-ieee_primary_55729873</originalsourceid><addsrcrecordid>eNp9i8GKwjAUReOoMEX7BbN5P1Bo0jRpliKKHzB7ebavNtImkkTEv58iruduDtzDWbDc6EY3RqqKl1J9sUxwxQthhF6-HZdCSiVUpVYs46aSBdeq-WZ5jLdynqyF5mXGuh04esJEafAd9D5AGgh6fIwJOotX56ON4Pv3nQJaB8-BaIyU4IKROvAO2gEDtomCjcm2EO_UpvCYAB2Or7nfsnWPc5J_uGE_x8Pv_lRYIjrfg50wvM51rYVpdPW__QM16Egm</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A new method for the fault diagnosis of the train wheelset based on characteristic spectrum analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhang, Jian ; Zhou, Shaowu ; Huang, Cailun</creator><creatorcontrib>Zhang, Jian ; Zhou, Shaowu ; Huang, Cailun</creatorcontrib><description>In the view of the fact that the information of the fault characteristic of the train wheelset is submerged into the background noises and the conventional spectral analysis method has its own deficiency due to the fuzzy spectrum value created by the load variation and rotation speed fluctuation, a method of full period and uniform angle sampling is applied, which transfers the vibration signal from time domain into angular domain. The angular domain signal is transferred into corresponding characteristic spectrum using FFT. Through spectrum estimation and analysis, fault characteristic spectrum values of train wheelset components are acquired to distinguish their faults. The application indicates the method can distinguish the faults of train wheelset accurately and efficiently.</description><identifier>ISSN: 1934-1768</identifier><identifier>ISBN: 9781424462636</identifier><identifier>ISBN: 1424462630</identifier><identifier>EISSN: 2161-2927</identifier><identifier>EISBN: 9787894631046</identifier><identifier>EISBN: 7894631043</identifier><language>eng</language><publisher>IEEE</publisher><subject>Bearing ; Characteristic Spectrum Analysis ; Circuit faults ; Eigenvalues and eigenfunctions ; Fault diagnosis ; Full Period and Uniform Angle Sampling ; Monitoring ; Spectral analysis ; Time frequency analysis ; Vibrations ; Wheelset</subject><ispartof>Proceedings of the 29th Chinese Control Conference, 2010, p.3988-3992</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5572987$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5572987$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Zhou, Shaowu</creatorcontrib><creatorcontrib>Huang, Cailun</creatorcontrib><title>A new method for the fault diagnosis of the train wheelset based on characteristic spectrum analysis</title><title>Proceedings of the 29th Chinese Control Conference</title><addtitle>CHICC</addtitle><description>In the view of the fact that the information of the fault characteristic of the train wheelset is submerged into the background noises and the conventional spectral analysis method has its own deficiency due to the fuzzy spectrum value created by the load variation and rotation speed fluctuation, a method of full period and uniform angle sampling is applied, which transfers the vibration signal from time domain into angular domain. The angular domain signal is transferred into corresponding characteristic spectrum using FFT. Through spectrum estimation and analysis, fault characteristic spectrum values of train wheelset components are acquired to distinguish their faults. The application indicates the method can distinguish the faults of train wheelset accurately and efficiently.</description><subject>Bearing</subject><subject>Characteristic Spectrum Analysis</subject><subject>Circuit faults</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Fault diagnosis</subject><subject>Full Period and Uniform Angle Sampling</subject><subject>Monitoring</subject><subject>Spectral analysis</subject><subject>Time frequency analysis</subject><subject>Vibrations</subject><subject>Wheelset</subject><issn>1934-1768</issn><issn>2161-2927</issn><isbn>9781424462636</isbn><isbn>1424462630</isbn><isbn>9787894631046</isbn><isbn>7894631043</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9i8GKwjAUReOoMEX7BbN5P1Bo0jRpliKKHzB7ebavNtImkkTEv58iruduDtzDWbDc6EY3RqqKl1J9sUxwxQthhF6-HZdCSiVUpVYs46aSBdeq-WZ5jLdynqyF5mXGuh04esJEafAd9D5AGgh6fIwJOotX56ON4Pv3nQJaB8-BaIyU4IKROvAO2gEDtomCjcm2EO_UpvCYAB2Or7nfsnWPc5J_uGE_x8Pv_lRYIjrfg50wvM51rYVpdPW__QM16Egm</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Zhang, Jian</creator><creator>Zhou, Shaowu</creator><creator>Huang, Cailun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>A new method for the fault diagnosis of the train wheelset based on characteristic spectrum analysis</title><author>Zhang, Jian ; Zhou, Shaowu ; Huang, Cailun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_55729873</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Bearing</topic><topic>Characteristic Spectrum Analysis</topic><topic>Circuit faults</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Fault diagnosis</topic><topic>Full Period and Uniform Angle Sampling</topic><topic>Monitoring</topic><topic>Spectral analysis</topic><topic>Time frequency analysis</topic><topic>Vibrations</topic><topic>Wheelset</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Jian</creatorcontrib><creatorcontrib>Zhou, Shaowu</creatorcontrib><creatorcontrib>Huang, Cailun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhang, Jian</au><au>Zhou, Shaowu</au><au>Huang, Cailun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A new method for the fault diagnosis of the train wheelset based on characteristic spectrum analysis</atitle><btitle>Proceedings of the 29th Chinese Control Conference</btitle><stitle>CHICC</stitle><date>2010-07</date><risdate>2010</risdate><spage>3988</spage><epage>3992</epage><pages>3988-3992</pages><issn>1934-1768</issn><eissn>2161-2927</eissn><isbn>9781424462636</isbn><isbn>1424462630</isbn><eisbn>9787894631046</eisbn><eisbn>7894631043</eisbn><abstract>In the view of the fact that the information of the fault characteristic of the train wheelset is submerged into the background noises and the conventional spectral analysis method has its own deficiency due to the fuzzy spectrum value created by the load variation and rotation speed fluctuation, a method of full period and uniform angle sampling is applied, which transfers the vibration signal from time domain into angular domain. The angular domain signal is transferred into corresponding characteristic spectrum using FFT. Through spectrum estimation and analysis, fault characteristic spectrum values of train wheelset components are acquired to distinguish their faults. The application indicates the method can distinguish the faults of train wheelset accurately and efficiently.</abstract><pub>IEEE</pub></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1934-1768
ispartof Proceedings of the 29th Chinese Control Conference, 2010, p.3988-3992
issn 1934-1768
2161-2927
language eng
recordid cdi_ieee_primary_5572987
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Bearing
Characteristic Spectrum Analysis
Circuit faults
Eigenvalues and eigenfunctions
Fault diagnosis
Full Period and Uniform Angle Sampling
Monitoring
Spectral analysis
Time frequency analysis
Vibrations
Wheelset
title A new method for the fault diagnosis of the train wheelset based on characteristic spectrum analysis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A54%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20new%20method%20for%20the%20fault%20diagnosis%20of%20the%20train%20wheelset%20based%20on%20characteristic%20spectrum%20analysis&rft.btitle=Proceedings%20of%20the%2029th%20Chinese%20Control%20Conference&rft.au=Zhang,%20Jian&rft.date=2010-07&rft.spage=3988&rft.epage=3992&rft.pages=3988-3992&rft.issn=1934-1768&rft.eissn=2161-2927&rft.isbn=9781424462636&rft.isbn_list=1424462630&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E5572987%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9787894631046&rft.eisbn_list=7894631043&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5572987&rfr_iscdi=true