A power harmonic detection method based on Wavelet Neural Network
Harmonic detection technology is one of the key technologies used for active power filter (APF), its development has determined the development of APF technology. It is difficult to detect the harmonic accurately because of the features of power network harmonic, such as inherent nonlinear, random,...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | chi ; eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2396 |
---|---|
container_issue | |
container_start_page | 2393 |
container_title | |
container_volume | |
creator | Mu Haiwei Ma Na Fu Guangjie Liu Xianglou |
description | Harmonic detection technology is one of the key technologies used for active power filter (APF), its development has determined the development of APF technology. It is difficult to detect the harmonic accurately because of the features of power network harmonic, such as inherent nonlinear, random, distribution, non-stationary and the complexity of impact factors, so the study of the power system harmonic's detection methods is very important. This paper proposes a harmonic detection method based on Wavelet Neural Network combining Wavelet with Neural Network, and designs for the wavelet neural network. The simulation results show that this method can detect the power network harmonic accurately and real-time. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5572572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5572572</ieee_id><sourcerecordid>5572572</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-e8455b2a047c9e8cecee74801cce9c7382d690512b7174ecdc984095003561243</originalsourceid><addsrcrecordid>eNotjNtKxDAUReMNrGO_wJf8QCEnObk9lsEbDPqi-Dik6ZGptpMhjQ7-vQVdbFjsl3XCam-ddR6NAoHmlFUSDDTSS3vGrgAlopFGiXNWgVfYgDXuktXz_CEWUEsLomJtyw_pSJnvQp7Sfoi8p0KxDGnPJyq71PMuzNTz5b-Fbxqp8Cf6ymFcVI4pf16zi_cwzlT_e8Ve725f1g_N5vn-cd1umgGELg051LqTQaCNnlykSGTRCYiRfLTKyd54oUF2FixS7KN3KLwWQmkDEtWK3fx1ByLaHvIwhfyz1drKZeoXHWdIBg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A power harmonic detection method based on Wavelet Neural Network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mu Haiwei ; Ma Na ; Fu Guangjie ; Liu Xianglou</creator><creatorcontrib>Mu Haiwei ; Ma Na ; Fu Guangjie ; Liu Xianglou</creatorcontrib><description>Harmonic detection technology is one of the key technologies used for active power filter (APF), its development has determined the development of APF technology. It is difficult to detect the harmonic accurately because of the features of power network harmonic, such as inherent nonlinear, random, distribution, non-stationary and the complexity of impact factors, so the study of the power system harmonic's detection methods is very important. This paper proposes a harmonic detection method based on Wavelet Neural Network combining Wavelet with Neural Network, and designs for the wavelet neural network. The simulation results show that this method can detect the power network harmonic accurately and real-time.</description><identifier>ISSN: 1934-1768</identifier><identifier>ISBN: 1424462630</identifier><identifier>ISBN: 9781424462636</identifier><identifier>EISSN: 2161-2927</identifier><identifier>EISBN: 9787894631046</identifier><identifier>EISBN: 7894631043</identifier><language>chi ; eng</language><publisher>IEEE</publisher><subject>Active filters ; Artificial neural networks ; Educational institutions ; Harmonic analysis ; Harmonic Detection ; Petroleum ; Power harmonic filters ; Simulation Research ; Wavelet Neural Network</subject><ispartof>Proceedings of the 29th Chinese Control Conference, 2010, p.2393-2396</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5572572$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5572572$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mu Haiwei</creatorcontrib><creatorcontrib>Ma Na</creatorcontrib><creatorcontrib>Fu Guangjie</creatorcontrib><creatorcontrib>Liu Xianglou</creatorcontrib><title>A power harmonic detection method based on Wavelet Neural Network</title><title>Proceedings of the 29th Chinese Control Conference</title><addtitle>CHICC</addtitle><description>Harmonic detection technology is one of the key technologies used for active power filter (APF), its development has determined the development of APF technology. It is difficult to detect the harmonic accurately because of the features of power network harmonic, such as inherent nonlinear, random, distribution, non-stationary and the complexity of impact factors, so the study of the power system harmonic's detection methods is very important. This paper proposes a harmonic detection method based on Wavelet Neural Network combining Wavelet with Neural Network, and designs for the wavelet neural network. The simulation results show that this method can detect the power network harmonic accurately and real-time.</description><subject>Active filters</subject><subject>Artificial neural networks</subject><subject>Educational institutions</subject><subject>Harmonic analysis</subject><subject>Harmonic Detection</subject><subject>Petroleum</subject><subject>Power harmonic filters</subject><subject>Simulation Research</subject><subject>Wavelet Neural Network</subject><issn>1934-1768</issn><issn>2161-2927</issn><isbn>1424462630</isbn><isbn>9781424462636</isbn><isbn>9787894631046</isbn><isbn>7894631043</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjNtKxDAUReMNrGO_wJf8QCEnObk9lsEbDPqi-Dik6ZGptpMhjQ7-vQVdbFjsl3XCam-ddR6NAoHmlFUSDDTSS3vGrgAlopFGiXNWgVfYgDXuktXz_CEWUEsLomJtyw_pSJnvQp7Sfoi8p0KxDGnPJyq71PMuzNTz5b-Fbxqp8Cf6ymFcVI4pf16zi_cwzlT_e8Ve725f1g_N5vn-cd1umgGELg051LqTQaCNnlykSGTRCYiRfLTKyd54oUF2FixS7KN3KLwWQmkDEtWK3fx1ByLaHvIwhfyz1drKZeoXHWdIBg</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Mu Haiwei</creator><creator>Ma Na</creator><creator>Fu Guangjie</creator><creator>Liu Xianglou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>A power harmonic detection method based on Wavelet Neural Network</title><author>Mu Haiwei ; Ma Na ; Fu Guangjie ; Liu Xianglou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-e8455b2a047c9e8cecee74801cce9c7382d690512b7174ecdc984095003561243</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>chi ; eng</language><creationdate>2010</creationdate><topic>Active filters</topic><topic>Artificial neural networks</topic><topic>Educational institutions</topic><topic>Harmonic analysis</topic><topic>Harmonic Detection</topic><topic>Petroleum</topic><topic>Power harmonic filters</topic><topic>Simulation Research</topic><topic>Wavelet Neural Network</topic><toplevel>online_resources</toplevel><creatorcontrib>Mu Haiwei</creatorcontrib><creatorcontrib>Ma Na</creatorcontrib><creatorcontrib>Fu Guangjie</creatorcontrib><creatorcontrib>Liu Xianglou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mu Haiwei</au><au>Ma Na</au><au>Fu Guangjie</au><au>Liu Xianglou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A power harmonic detection method based on Wavelet Neural Network</atitle><btitle>Proceedings of the 29th Chinese Control Conference</btitle><stitle>CHICC</stitle><date>2010-07</date><risdate>2010</risdate><spage>2393</spage><epage>2396</epage><pages>2393-2396</pages><issn>1934-1768</issn><eissn>2161-2927</eissn><isbn>1424462630</isbn><isbn>9781424462636</isbn><eisbn>9787894631046</eisbn><eisbn>7894631043</eisbn><abstract>Harmonic detection technology is one of the key technologies used for active power filter (APF), its development has determined the development of APF technology. It is difficult to detect the harmonic accurately because of the features of power network harmonic, such as inherent nonlinear, random, distribution, non-stationary and the complexity of impact factors, so the study of the power system harmonic's detection methods is very important. This paper proposes a harmonic detection method based on Wavelet Neural Network combining Wavelet with Neural Network, and designs for the wavelet neural network. The simulation results show that this method can detect the power network harmonic accurately and real-time.</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1934-1768 |
ispartof | Proceedings of the 29th Chinese Control Conference, 2010, p.2393-2396 |
issn | 1934-1768 2161-2927 |
language | chi ; eng |
recordid | cdi_ieee_primary_5572572 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Active filters Artificial neural networks Educational institutions Harmonic analysis Harmonic Detection Petroleum Power harmonic filters Simulation Research Wavelet Neural Network |
title | A power harmonic detection method based on Wavelet Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A06%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20power%20harmonic%20detection%20method%20based%20on%20Wavelet%20Neural%20Network&rft.btitle=Proceedings%20of%20the%2029th%20Chinese%20Control%20Conference&rft.au=Mu%20Haiwei&rft.date=2010-07&rft.spage=2393&rft.epage=2396&rft.pages=2393-2396&rft.issn=1934-1768&rft.eissn=2161-2927&rft.isbn=1424462630&rft.isbn_list=9781424462636&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E5572572%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9787894631046&rft.eisbn_list=7894631043&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5572572&rfr_iscdi=true |