A power harmonic detection method based on Wavelet Neural Network

Harmonic detection technology is one of the key technologies used for active power filter (APF), its development has determined the development of APF technology. It is difficult to detect the harmonic accurately because of the features of power network harmonic, such as inherent nonlinear, random,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Mu Haiwei, Ma Na, Fu Guangjie, Liu Xianglou
Format: Tagungsbericht
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2396
container_issue
container_start_page 2393
container_title
container_volume
creator Mu Haiwei
Ma Na
Fu Guangjie
Liu Xianglou
description Harmonic detection technology is one of the key technologies used for active power filter (APF), its development has determined the development of APF technology. It is difficult to detect the harmonic accurately because of the features of power network harmonic, such as inherent nonlinear, random, distribution, non-stationary and the complexity of impact factors, so the study of the power system harmonic's detection methods is very important. This paper proposes a harmonic detection method based on Wavelet Neural Network combining Wavelet with Neural Network, and designs for the wavelet neural network. The simulation results show that this method can detect the power network harmonic accurately and real-time.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5572572</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5572572</ieee_id><sourcerecordid>5572572</sourcerecordid><originalsourceid>FETCH-LOGICAL-i105t-e8455b2a047c9e8cecee74801cce9c7382d690512b7174ecdc984095003561243</originalsourceid><addsrcrecordid>eNotjNtKxDAUReMNrGO_wJf8QCEnObk9lsEbDPqi-Dik6ZGptpMhjQ7-vQVdbFjsl3XCam-ddR6NAoHmlFUSDDTSS3vGrgAlopFGiXNWgVfYgDXuktXz_CEWUEsLomJtyw_pSJnvQp7Sfoi8p0KxDGnPJyq71PMuzNTz5b-Fbxqp8Cf6ymFcVI4pf16zi_cwzlT_e8Ve725f1g_N5vn-cd1umgGELg051LqTQaCNnlykSGTRCYiRfLTKyd54oUF2FixS7KN3KLwWQmkDEtWK3fx1ByLaHvIwhfyz1drKZeoXHWdIBg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A power harmonic detection method based on Wavelet Neural Network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Mu Haiwei ; Ma Na ; Fu Guangjie ; Liu Xianglou</creator><creatorcontrib>Mu Haiwei ; Ma Na ; Fu Guangjie ; Liu Xianglou</creatorcontrib><description>Harmonic detection technology is one of the key technologies used for active power filter (APF), its development has determined the development of APF technology. It is difficult to detect the harmonic accurately because of the features of power network harmonic, such as inherent nonlinear, random, distribution, non-stationary and the complexity of impact factors, so the study of the power system harmonic's detection methods is very important. This paper proposes a harmonic detection method based on Wavelet Neural Network combining Wavelet with Neural Network, and designs for the wavelet neural network. The simulation results show that this method can detect the power network harmonic accurately and real-time.</description><identifier>ISSN: 1934-1768</identifier><identifier>ISBN: 1424462630</identifier><identifier>ISBN: 9781424462636</identifier><identifier>EISSN: 2161-2927</identifier><identifier>EISBN: 9787894631046</identifier><identifier>EISBN: 7894631043</identifier><language>chi ; eng</language><publisher>IEEE</publisher><subject>Active filters ; Artificial neural networks ; Educational institutions ; Harmonic analysis ; Harmonic Detection ; Petroleum ; Power harmonic filters ; Simulation Research ; Wavelet Neural Network</subject><ispartof>Proceedings of the 29th Chinese Control Conference, 2010, p.2393-2396</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5572572$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5572572$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mu Haiwei</creatorcontrib><creatorcontrib>Ma Na</creatorcontrib><creatorcontrib>Fu Guangjie</creatorcontrib><creatorcontrib>Liu Xianglou</creatorcontrib><title>A power harmonic detection method based on Wavelet Neural Network</title><title>Proceedings of the 29th Chinese Control Conference</title><addtitle>CHICC</addtitle><description>Harmonic detection technology is one of the key technologies used for active power filter (APF), its development has determined the development of APF technology. It is difficult to detect the harmonic accurately because of the features of power network harmonic, such as inherent nonlinear, random, distribution, non-stationary and the complexity of impact factors, so the study of the power system harmonic's detection methods is very important. This paper proposes a harmonic detection method based on Wavelet Neural Network combining Wavelet with Neural Network, and designs for the wavelet neural network. The simulation results show that this method can detect the power network harmonic accurately and real-time.</description><subject>Active filters</subject><subject>Artificial neural networks</subject><subject>Educational institutions</subject><subject>Harmonic analysis</subject><subject>Harmonic Detection</subject><subject>Petroleum</subject><subject>Power harmonic filters</subject><subject>Simulation Research</subject><subject>Wavelet Neural Network</subject><issn>1934-1768</issn><issn>2161-2927</issn><isbn>1424462630</isbn><isbn>9781424462636</isbn><isbn>9787894631046</isbn><isbn>7894631043</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotjNtKxDAUReMNrGO_wJf8QCEnObk9lsEbDPqi-Dik6ZGptpMhjQ7-vQVdbFjsl3XCam-ddR6NAoHmlFUSDDTSS3vGrgAlopFGiXNWgVfYgDXuktXz_CEWUEsLomJtyw_pSJnvQp7Sfoi8p0KxDGnPJyq71PMuzNTz5b-Fbxqp8Cf6ymFcVI4pf16zi_cwzlT_e8Ve725f1g_N5vn-cd1umgGELg051LqTQaCNnlykSGTRCYiRfLTKyd54oUF2FixS7KN3KLwWQmkDEtWK3fx1ByLaHvIwhfyz1drKZeoXHWdIBg</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Mu Haiwei</creator><creator>Ma Na</creator><creator>Fu Guangjie</creator><creator>Liu Xianglou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>A power harmonic detection method based on Wavelet Neural Network</title><author>Mu Haiwei ; Ma Na ; Fu Guangjie ; Liu Xianglou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i105t-e8455b2a047c9e8cecee74801cce9c7382d690512b7174ecdc984095003561243</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>chi ; eng</language><creationdate>2010</creationdate><topic>Active filters</topic><topic>Artificial neural networks</topic><topic>Educational institutions</topic><topic>Harmonic analysis</topic><topic>Harmonic Detection</topic><topic>Petroleum</topic><topic>Power harmonic filters</topic><topic>Simulation Research</topic><topic>Wavelet Neural Network</topic><toplevel>online_resources</toplevel><creatorcontrib>Mu Haiwei</creatorcontrib><creatorcontrib>Ma Na</creatorcontrib><creatorcontrib>Fu Guangjie</creatorcontrib><creatorcontrib>Liu Xianglou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mu Haiwei</au><au>Ma Na</au><au>Fu Guangjie</au><au>Liu Xianglou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A power harmonic detection method based on Wavelet Neural Network</atitle><btitle>Proceedings of the 29th Chinese Control Conference</btitle><stitle>CHICC</stitle><date>2010-07</date><risdate>2010</risdate><spage>2393</spage><epage>2396</epage><pages>2393-2396</pages><issn>1934-1768</issn><eissn>2161-2927</eissn><isbn>1424462630</isbn><isbn>9781424462636</isbn><eisbn>9787894631046</eisbn><eisbn>7894631043</eisbn><abstract>Harmonic detection technology is one of the key technologies used for active power filter (APF), its development has determined the development of APF technology. It is difficult to detect the harmonic accurately because of the features of power network harmonic, such as inherent nonlinear, random, distribution, non-stationary and the complexity of impact factors, so the study of the power system harmonic's detection methods is very important. This paper proposes a harmonic detection method based on Wavelet Neural Network combining Wavelet with Neural Network, and designs for the wavelet neural network. The simulation results show that this method can detect the power network harmonic accurately and real-time.</abstract><pub>IEEE</pub><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1934-1768
ispartof Proceedings of the 29th Chinese Control Conference, 2010, p.2393-2396
issn 1934-1768
2161-2927
language chi ; eng
recordid cdi_ieee_primary_5572572
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Active filters
Artificial neural networks
Educational institutions
Harmonic analysis
Harmonic Detection
Petroleum
Power harmonic filters
Simulation Research
Wavelet Neural Network
title A power harmonic detection method based on Wavelet Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T20%3A06%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20power%20harmonic%20detection%20method%20based%20on%20Wavelet%20Neural%20Network&rft.btitle=Proceedings%20of%20the%2029th%20Chinese%20Control%20Conference&rft.au=Mu%20Haiwei&rft.date=2010-07&rft.spage=2393&rft.epage=2396&rft.pages=2393-2396&rft.issn=1934-1768&rft.eissn=2161-2927&rft.isbn=1424462630&rft.isbn_list=9781424462636&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E5572572%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9787894631046&rft.eisbn_list=7894631043&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5572572&rfr_iscdi=true