Non-wood forest information extraction based on ALOS data

Non-wood forest is a kind of important forest resource. This paper focused on the information extraction of non-wood forest based on Advanced Land Observation Satellite (ALOS) data. Band characteristics were analyzed to get understanding of this data wholly by information content, correlation coeffi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Enping Yan, Hui Lin, Dengkui Mo, Liming Bai, Hua Sun
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2041
container_issue
container_start_page 2037
container_title
container_volume 5
creator Enping Yan
Hui Lin
Dengkui Mo
Liming Bai
Hua Sun
description Non-wood forest is a kind of important forest resource. This paper focused on the information extraction of non-wood forest based on Advanced Land Observation Satellite (ALOS) data. Band characteristics were analyzed to get understanding of this data wholly by information content, correlation coefficient and Optimum Index Factor (OIF). A new set of data with eight bands were obtained by the fusion of Normalized Difference Vegetation Index (NDVI), the first three components of Principal Component Analysis (PCA1, PCA2, PCA3) and the four bands of ALOS data. Various kinds of vegetations, especially non-wood forest was analyzed through the Spectral Feature Model (SFM) and Maximum Likelihood (ML) with association of topographical map and field investigation data. Results show that NDVI and PCA can improve the extraction accuracy of non-wood forest. In addition, SFM reduces the phenomenon of mixed classification and improves the information extraction accuracy of non-wood forest, which will provide reference for the classification of vegetation.
doi_str_mv 10.1109/FSKD.2010.5569673
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5569673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5569673</ieee_id><sourcerecordid>5569673</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d8140c6b16f5664c4f40d3560a99854c339c3aeb0a2887479fb2c6084d0c6f3c3</originalsourceid><addsrcrecordid>eNpFj09LAzEUxCMiqLUfQLzkC2x9yXvJJsdSbRUXe2jvJZs_ELG7shtQv72LFpzL_OYwA8PYrYCFEGDv17uXh4WEKSqlra7xjF0LkkTKIprz_yDEJZuP4xtMIiUB1RWzr31XffZ94Kkf4lh47iY4upL7jsevMjj_i60bY-ATLJvtjgdX3A27SO59jPOTz9h-_bhfPVXNdvO8WjZVtlCqYASB163QSWlNnhJBQKXBWWsUeUTr0cUWnDSmptqmVnoNhsLUSuhxxu7-ZnOM8fAx5KMbvg-np_gDFRtF7Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Non-wood forest information extraction based on ALOS data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Enping Yan ; Hui Lin ; Dengkui Mo ; Liming Bai ; Hua Sun</creator><creatorcontrib>Enping Yan ; Hui Lin ; Dengkui Mo ; Liming Bai ; Hua Sun</creatorcontrib><description>Non-wood forest is a kind of important forest resource. This paper focused on the information extraction of non-wood forest based on Advanced Land Observation Satellite (ALOS) data. Band characteristics were analyzed to get understanding of this data wholly by information content, correlation coefficient and Optimum Index Factor (OIF). A new set of data with eight bands were obtained by the fusion of Normalized Difference Vegetation Index (NDVI), the first three components of Principal Component Analysis (PCA1, PCA2, PCA3) and the four bands of ALOS data. Various kinds of vegetations, especially non-wood forest was analyzed through the Spectral Feature Model (SFM) and Maximum Likelihood (ML) with association of topographical map and field investigation data. Results show that NDVI and PCA can improve the extraction accuracy of non-wood forest. In addition, SFM reduces the phenomenon of mixed classification and improves the information extraction accuracy of non-wood forest, which will provide reference for the classification of vegetation.</description><identifier>ISBN: 1424459311</identifier><identifier>ISBN: 9781424459315</identifier><identifier>EISBN: 1424459338</identifier><identifier>EISBN: 9781424459339</identifier><identifier>EISBN: 1424459346</identifier><identifier>EISBN: 9781424459346</identifier><identifier>DOI: 10.1109/FSKD.2010.5569673</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; ALOS data ; Correlation ; Data mining ; Feature extraction ; information extraction ; non-wood forest ; Presses ; Remote sensing ; Vegetation mapping</subject><ispartof>2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, 2010, Vol.5, p.2037-2041</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5569673$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5569673$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Enping Yan</creatorcontrib><creatorcontrib>Hui Lin</creatorcontrib><creatorcontrib>Dengkui Mo</creatorcontrib><creatorcontrib>Liming Bai</creatorcontrib><creatorcontrib>Hua Sun</creatorcontrib><title>Non-wood forest information extraction based on ALOS data</title><title>2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery</title><addtitle>FSKD</addtitle><description>Non-wood forest is a kind of important forest resource. This paper focused on the information extraction of non-wood forest based on Advanced Land Observation Satellite (ALOS) data. Band characteristics were analyzed to get understanding of this data wholly by information content, correlation coefficient and Optimum Index Factor (OIF). A new set of data with eight bands were obtained by the fusion of Normalized Difference Vegetation Index (NDVI), the first three components of Principal Component Analysis (PCA1, PCA2, PCA3) and the four bands of ALOS data. Various kinds of vegetations, especially non-wood forest was analyzed through the Spectral Feature Model (SFM) and Maximum Likelihood (ML) with association of topographical map and field investigation data. Results show that NDVI and PCA can improve the extraction accuracy of non-wood forest. In addition, SFM reduces the phenomenon of mixed classification and improves the information extraction accuracy of non-wood forest, which will provide reference for the classification of vegetation.</description><subject>Accuracy</subject><subject>ALOS data</subject><subject>Correlation</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>information extraction</subject><subject>non-wood forest</subject><subject>Presses</subject><subject>Remote sensing</subject><subject>Vegetation mapping</subject><isbn>1424459311</isbn><isbn>9781424459315</isbn><isbn>1424459338</isbn><isbn>9781424459339</isbn><isbn>1424459346</isbn><isbn>9781424459346</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj09LAzEUxCMiqLUfQLzkC2x9yXvJJsdSbRUXe2jvJZs_ELG7shtQv72LFpzL_OYwA8PYrYCFEGDv17uXh4WEKSqlra7xjF0LkkTKIprz_yDEJZuP4xtMIiUB1RWzr31XffZ94Kkf4lh47iY4upL7jsevMjj_i60bY-ATLJvtjgdX3A27SO59jPOTz9h-_bhfPVXNdvO8WjZVtlCqYASB163QSWlNnhJBQKXBWWsUeUTr0cUWnDSmptqmVnoNhsLUSuhxxu7-ZnOM8fAx5KMbvg-np_gDFRtF7Q</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Enping Yan</creator><creator>Hui Lin</creator><creator>Dengkui Mo</creator><creator>Liming Bai</creator><creator>Hua Sun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Non-wood forest information extraction based on ALOS data</title><author>Enping Yan ; Hui Lin ; Dengkui Mo ; Liming Bai ; Hua Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d8140c6b16f5664c4f40d3560a99854c339c3aeb0a2887479fb2c6084d0c6f3c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>ALOS data</topic><topic>Correlation</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>information extraction</topic><topic>non-wood forest</topic><topic>Presses</topic><topic>Remote sensing</topic><topic>Vegetation mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Enping Yan</creatorcontrib><creatorcontrib>Hui Lin</creatorcontrib><creatorcontrib>Dengkui Mo</creatorcontrib><creatorcontrib>Liming Bai</creatorcontrib><creatorcontrib>Hua Sun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Enping Yan</au><au>Hui Lin</au><au>Dengkui Mo</au><au>Liming Bai</au><au>Hua Sun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Non-wood forest information extraction based on ALOS data</atitle><btitle>2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery</btitle><stitle>FSKD</stitle><date>2010-08</date><risdate>2010</risdate><volume>5</volume><spage>2037</spage><epage>2041</epage><pages>2037-2041</pages><isbn>1424459311</isbn><isbn>9781424459315</isbn><eisbn>1424459338</eisbn><eisbn>9781424459339</eisbn><eisbn>1424459346</eisbn><eisbn>9781424459346</eisbn><abstract>Non-wood forest is a kind of important forest resource. This paper focused on the information extraction of non-wood forest based on Advanced Land Observation Satellite (ALOS) data. Band characteristics were analyzed to get understanding of this data wholly by information content, correlation coefficient and Optimum Index Factor (OIF). A new set of data with eight bands were obtained by the fusion of Normalized Difference Vegetation Index (NDVI), the first three components of Principal Component Analysis (PCA1, PCA2, PCA3) and the four bands of ALOS data. Various kinds of vegetations, especially non-wood forest was analyzed through the Spectral Feature Model (SFM) and Maximum Likelihood (ML) with association of topographical map and field investigation data. Results show that NDVI and PCA can improve the extraction accuracy of non-wood forest. In addition, SFM reduces the phenomenon of mixed classification and improves the information extraction accuracy of non-wood forest, which will provide reference for the classification of vegetation.</abstract><pub>IEEE</pub><doi>10.1109/FSKD.2010.5569673</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424459311
ispartof 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, 2010, Vol.5, p.2037-2041
issn
language eng
recordid cdi_ieee_primary_5569673
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Accuracy
ALOS data
Correlation
Data mining
Feature extraction
information extraction
non-wood forest
Presses
Remote sensing
Vegetation mapping
title Non-wood forest information extraction based on ALOS data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Non-wood%20forest%20information%20extraction%20based%20on%20ALOS%20data&rft.btitle=2010%20Seventh%20International%20Conference%20on%20Fuzzy%20Systems%20and%20Knowledge%20Discovery&rft.au=Enping%20Yan&rft.date=2010-08&rft.volume=5&rft.spage=2037&rft.epage=2041&rft.pages=2037-2041&rft.isbn=1424459311&rft.isbn_list=9781424459315&rft_id=info:doi/10.1109/FSKD.2010.5569673&rft_dat=%3Cieee_6IE%3E5569673%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424459338&rft.eisbn_list=9781424459339&rft.eisbn_list=1424459346&rft.eisbn_list=9781424459346&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5569673&rfr_iscdi=true