Non-wood forest information extraction based on ALOS data
Non-wood forest is a kind of important forest resource. This paper focused on the information extraction of non-wood forest based on Advanced Land Observation Satellite (ALOS) data. Band characteristics were analyzed to get understanding of this data wholly by information content, correlation coeffi...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2041 |
---|---|
container_issue | |
container_start_page | 2037 |
container_title | |
container_volume | 5 |
creator | Enping Yan Hui Lin Dengkui Mo Liming Bai Hua Sun |
description | Non-wood forest is a kind of important forest resource. This paper focused on the information extraction of non-wood forest based on Advanced Land Observation Satellite (ALOS) data. Band characteristics were analyzed to get understanding of this data wholly by information content, correlation coefficient and Optimum Index Factor (OIF). A new set of data with eight bands were obtained by the fusion of Normalized Difference Vegetation Index (NDVI), the first three components of Principal Component Analysis (PCA1, PCA2, PCA3) and the four bands of ALOS data. Various kinds of vegetations, especially non-wood forest was analyzed through the Spectral Feature Model (SFM) and Maximum Likelihood (ML) with association of topographical map and field investigation data. Results show that NDVI and PCA can improve the extraction accuracy of non-wood forest. In addition, SFM reduces the phenomenon of mixed classification and improves the information extraction accuracy of non-wood forest, which will provide reference for the classification of vegetation. |
doi_str_mv | 10.1109/FSKD.2010.5569673 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5569673</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5569673</ieee_id><sourcerecordid>5569673</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d8140c6b16f5664c4f40d3560a99854c339c3aeb0a2887479fb2c6084d0c6f3c3</originalsourceid><addsrcrecordid>eNpFj09LAzEUxCMiqLUfQLzkC2x9yXvJJsdSbRUXe2jvJZs_ELG7shtQv72LFpzL_OYwA8PYrYCFEGDv17uXh4WEKSqlra7xjF0LkkTKIprz_yDEJZuP4xtMIiUB1RWzr31XffZ94Kkf4lh47iY4upL7jsevMjj_i60bY-ATLJvtjgdX3A27SO59jPOTz9h-_bhfPVXNdvO8WjZVtlCqYASB163QSWlNnhJBQKXBWWsUeUTr0cUWnDSmptqmVnoNhsLUSuhxxu7-ZnOM8fAx5KMbvg-np_gDFRtF7Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Non-wood forest information extraction based on ALOS data</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Enping Yan ; Hui Lin ; Dengkui Mo ; Liming Bai ; Hua Sun</creator><creatorcontrib>Enping Yan ; Hui Lin ; Dengkui Mo ; Liming Bai ; Hua Sun</creatorcontrib><description>Non-wood forest is a kind of important forest resource. This paper focused on the information extraction of non-wood forest based on Advanced Land Observation Satellite (ALOS) data. Band characteristics were analyzed to get understanding of this data wholly by information content, correlation coefficient and Optimum Index Factor (OIF). A new set of data with eight bands were obtained by the fusion of Normalized Difference Vegetation Index (NDVI), the first three components of Principal Component Analysis (PCA1, PCA2, PCA3) and the four bands of ALOS data. Various kinds of vegetations, especially non-wood forest was analyzed through the Spectral Feature Model (SFM) and Maximum Likelihood (ML) with association of topographical map and field investigation data. Results show that NDVI and PCA can improve the extraction accuracy of non-wood forest. In addition, SFM reduces the phenomenon of mixed classification and improves the information extraction accuracy of non-wood forest, which will provide reference for the classification of vegetation.</description><identifier>ISBN: 1424459311</identifier><identifier>ISBN: 9781424459315</identifier><identifier>EISBN: 1424459338</identifier><identifier>EISBN: 9781424459339</identifier><identifier>EISBN: 1424459346</identifier><identifier>EISBN: 9781424459346</identifier><identifier>DOI: 10.1109/FSKD.2010.5569673</identifier><language>eng</language><publisher>IEEE</publisher><subject>Accuracy ; ALOS data ; Correlation ; Data mining ; Feature extraction ; information extraction ; non-wood forest ; Presses ; Remote sensing ; Vegetation mapping</subject><ispartof>2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, 2010, Vol.5, p.2037-2041</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5569673$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5569673$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Enping Yan</creatorcontrib><creatorcontrib>Hui Lin</creatorcontrib><creatorcontrib>Dengkui Mo</creatorcontrib><creatorcontrib>Liming Bai</creatorcontrib><creatorcontrib>Hua Sun</creatorcontrib><title>Non-wood forest information extraction based on ALOS data</title><title>2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery</title><addtitle>FSKD</addtitle><description>Non-wood forest is a kind of important forest resource. This paper focused on the information extraction of non-wood forest based on Advanced Land Observation Satellite (ALOS) data. Band characteristics were analyzed to get understanding of this data wholly by information content, correlation coefficient and Optimum Index Factor (OIF). A new set of data with eight bands were obtained by the fusion of Normalized Difference Vegetation Index (NDVI), the first three components of Principal Component Analysis (PCA1, PCA2, PCA3) and the four bands of ALOS data. Various kinds of vegetations, especially non-wood forest was analyzed through the Spectral Feature Model (SFM) and Maximum Likelihood (ML) with association of topographical map and field investigation data. Results show that NDVI and PCA can improve the extraction accuracy of non-wood forest. In addition, SFM reduces the phenomenon of mixed classification and improves the information extraction accuracy of non-wood forest, which will provide reference for the classification of vegetation.</description><subject>Accuracy</subject><subject>ALOS data</subject><subject>Correlation</subject><subject>Data mining</subject><subject>Feature extraction</subject><subject>information extraction</subject><subject>non-wood forest</subject><subject>Presses</subject><subject>Remote sensing</subject><subject>Vegetation mapping</subject><isbn>1424459311</isbn><isbn>9781424459315</isbn><isbn>1424459338</isbn><isbn>9781424459339</isbn><isbn>1424459346</isbn><isbn>9781424459346</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj09LAzEUxCMiqLUfQLzkC2x9yXvJJsdSbRUXe2jvJZs_ELG7shtQv72LFpzL_OYwA8PYrYCFEGDv17uXh4WEKSqlra7xjF0LkkTKIprz_yDEJZuP4xtMIiUB1RWzr31XffZ94Kkf4lh47iY4upL7jsevMjj_i60bY-ATLJvtjgdX3A27SO59jPOTz9h-_bhfPVXNdvO8WjZVtlCqYASB163QSWlNnhJBQKXBWWsUeUTr0cUWnDSmptqmVnoNhsLUSuhxxu7-ZnOM8fAx5KMbvg-np_gDFRtF7Q</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Enping Yan</creator><creator>Hui Lin</creator><creator>Dengkui Mo</creator><creator>Liming Bai</creator><creator>Hua Sun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Non-wood forest information extraction based on ALOS data</title><author>Enping Yan ; Hui Lin ; Dengkui Mo ; Liming Bai ; Hua Sun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d8140c6b16f5664c4f40d3560a99854c339c3aeb0a2887479fb2c6084d0c6f3c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Accuracy</topic><topic>ALOS data</topic><topic>Correlation</topic><topic>Data mining</topic><topic>Feature extraction</topic><topic>information extraction</topic><topic>non-wood forest</topic><topic>Presses</topic><topic>Remote sensing</topic><topic>Vegetation mapping</topic><toplevel>online_resources</toplevel><creatorcontrib>Enping Yan</creatorcontrib><creatorcontrib>Hui Lin</creatorcontrib><creatorcontrib>Dengkui Mo</creatorcontrib><creatorcontrib>Liming Bai</creatorcontrib><creatorcontrib>Hua Sun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Enping Yan</au><au>Hui Lin</au><au>Dengkui Mo</au><au>Liming Bai</au><au>Hua Sun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Non-wood forest information extraction based on ALOS data</atitle><btitle>2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery</btitle><stitle>FSKD</stitle><date>2010-08</date><risdate>2010</risdate><volume>5</volume><spage>2037</spage><epage>2041</epage><pages>2037-2041</pages><isbn>1424459311</isbn><isbn>9781424459315</isbn><eisbn>1424459338</eisbn><eisbn>9781424459339</eisbn><eisbn>1424459346</eisbn><eisbn>9781424459346</eisbn><abstract>Non-wood forest is a kind of important forest resource. This paper focused on the information extraction of non-wood forest based on Advanced Land Observation Satellite (ALOS) data. Band characteristics were analyzed to get understanding of this data wholly by information content, correlation coefficient and Optimum Index Factor (OIF). A new set of data with eight bands were obtained by the fusion of Normalized Difference Vegetation Index (NDVI), the first three components of Principal Component Analysis (PCA1, PCA2, PCA3) and the four bands of ALOS data. Various kinds of vegetations, especially non-wood forest was analyzed through the Spectral Feature Model (SFM) and Maximum Likelihood (ML) with association of topographical map and field investigation data. Results show that NDVI and PCA can improve the extraction accuracy of non-wood forest. In addition, SFM reduces the phenomenon of mixed classification and improves the information extraction accuracy of non-wood forest, which will provide reference for the classification of vegetation.</abstract><pub>IEEE</pub><doi>10.1109/FSKD.2010.5569673</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424459311 |
ispartof | 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, 2010, Vol.5, p.2037-2041 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5569673 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Accuracy ALOS data Correlation Data mining Feature extraction information extraction non-wood forest Presses Remote sensing Vegetation mapping |
title | Non-wood forest information extraction based on ALOS data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T17%3A14%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Non-wood%20forest%20information%20extraction%20based%20on%20ALOS%20data&rft.btitle=2010%20Seventh%20International%20Conference%20on%20Fuzzy%20Systems%20and%20Knowledge%20Discovery&rft.au=Enping%20Yan&rft.date=2010-08&rft.volume=5&rft.spage=2037&rft.epage=2041&rft.pages=2037-2041&rft.isbn=1424459311&rft.isbn_list=9781424459315&rft_id=info:doi/10.1109/FSKD.2010.5569673&rft_dat=%3Cieee_6IE%3E5569673%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424459338&rft.eisbn_list=9781424459339&rft.eisbn_list=1424459346&rft.eisbn_list=9781424459346&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5569673&rfr_iscdi=true |