User interests mining based on Topic Map

In this paper, we propose a method for mining user interests based on topic map in an e-learning system. It is now widely assumed that in personalized information area user interests plays an important role in document recommendation. User interests generally reflect the user background and topics o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Wei Kuang, Nianlong Luo
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2402
container_issue
container_start_page 2399
container_title
container_volume 5
creator Wei Kuang
Nianlong Luo
description In this paper, we propose a method for mining user interests based on topic map in an e-learning system. It is now widely assumed that in personalized information area user interests plays an important role in document recommendation. User interests generally reflect the user background and topics of interests. Topic Maps is an ISO standard for the representation and interchange of knowledge, which builds a structured semantic web on the layer of information resources. In an e-learning system, topic maps can provide a good semantic model for the course document. Besides with the help of the topic maps, we can build an exact model for user interests. Because in an e-learning system, we can get the users' log and users' learning condition from the server. Thus the system adopts interest mining technology and can automatically identify the learner's interests and recommend interest-related resources. In this paper, we only focus on interests mining and interests modeling. The interest modeling system using new approach based on topic map is more effective.
doi_str_mv 10.1109/FSKD.2010.5569519
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5569519</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5569519</ieee_id><sourcerecordid>5569519</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c84f97415eb28a8ff34246749341aa536d0772196ada89f4d0264553d4de24363</originalsourceid><addsrcrecordid>eNpFj8FKAzEURSMiqLUfIG6ydDNtXt57mWQp1aq04sJxXdImkYidDpPZ-PcOtODdXM7mXK4Qt6BmAMrNlx-rx5lWIzIbx-DOxDWQJmKHaM__AeBSTEv5VmOItUK-EvefJfYyt0PsYxmK3Oc2t19y60sM8tDK5tDlnXzz3Y24SP6nxOmpJ6JZPjWLl2r9_vy6eFhX2amh2llKribguNXW25Rw3DY1OSTwntEEVdcanPHBW5coKG2IGQOFqAkNTsTdUZtjjJuuz3vf_25Ox_APjno_AA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>User interests mining based on Topic Map</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Wei Kuang ; Nianlong Luo</creator><creatorcontrib>Wei Kuang ; Nianlong Luo</creatorcontrib><description>In this paper, we propose a method for mining user interests based on topic map in an e-learning system. It is now widely assumed that in personalized information area user interests plays an important role in document recommendation. User interests generally reflect the user background and topics of interests. Topic Maps is an ISO standard for the representation and interchange of knowledge, which builds a structured semantic web on the layer of information resources. In an e-learning system, topic maps can provide a good semantic model for the course document. Besides with the help of the topic maps, we can build an exact model for user interests. Because in an e-learning system, we can get the users' log and users' learning condition from the server. Thus the system adopts interest mining technology and can automatically identify the learner's interests and recommend interest-related resources. In this paper, we only focus on interests mining and interests modeling. The interest modeling system using new approach based on topic map is more effective.</description><identifier>ISBN: 1424459311</identifier><identifier>ISBN: 9781424459315</identifier><identifier>EISBN: 1424459338</identifier><identifier>EISBN: 9781424459339</identifier><identifier>EISBN: 1424459346</identifier><identifier>EISBN: 9781424459346</identifier><identifier>DOI: 10.1109/FSKD.2010.5569519</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptation model ; Analytical models ; Computational modeling ; Data mining ; Data models ; interest model ; interests mining ; Solid modeling ; Support vector machine classification ; topic map</subject><ispartof>2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, 2010, Vol.5, p.2399-2402</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5569519$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5569519$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wei Kuang</creatorcontrib><creatorcontrib>Nianlong Luo</creatorcontrib><title>User interests mining based on Topic Map</title><title>2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery</title><addtitle>FSKD</addtitle><description>In this paper, we propose a method for mining user interests based on topic map in an e-learning system. It is now widely assumed that in personalized information area user interests plays an important role in document recommendation. User interests generally reflect the user background and topics of interests. Topic Maps is an ISO standard for the representation and interchange of knowledge, which builds a structured semantic web on the layer of information resources. In an e-learning system, topic maps can provide a good semantic model for the course document. Besides with the help of the topic maps, we can build an exact model for user interests. Because in an e-learning system, we can get the users' log and users' learning condition from the server. Thus the system adopts interest mining technology and can automatically identify the learner's interests and recommend interest-related resources. In this paper, we only focus on interests mining and interests modeling. The interest modeling system using new approach based on topic map is more effective.</description><subject>Adaptation model</subject><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Data mining</subject><subject>Data models</subject><subject>interest model</subject><subject>interests mining</subject><subject>Solid modeling</subject><subject>Support vector machine classification</subject><subject>topic map</subject><isbn>1424459311</isbn><isbn>9781424459315</isbn><isbn>1424459338</isbn><isbn>9781424459339</isbn><isbn>1424459346</isbn><isbn>9781424459346</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj8FKAzEURSMiqLUfIG6ydDNtXt57mWQp1aq04sJxXdImkYidDpPZ-PcOtODdXM7mXK4Qt6BmAMrNlx-rx5lWIzIbx-DOxDWQJmKHaM__AeBSTEv5VmOItUK-EvefJfYyt0PsYxmK3Oc2t19y60sM8tDK5tDlnXzz3Y24SP6nxOmpJ6JZPjWLl2r9_vy6eFhX2amh2llKribguNXW25Rw3DY1OSTwntEEVdcanPHBW5coKG2IGQOFqAkNTsTdUZtjjJuuz3vf_25Ox_APjno_AA</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Wei Kuang</creator><creator>Nianlong Luo</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>User interests mining based on Topic Map</title><author>Wei Kuang ; Nianlong Luo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c84f97415eb28a8ff34246749341aa536d0772196ada89f4d0264553d4de24363</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptation model</topic><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Data mining</topic><topic>Data models</topic><topic>interest model</topic><topic>interests mining</topic><topic>Solid modeling</topic><topic>Support vector machine classification</topic><topic>topic map</topic><toplevel>online_resources</toplevel><creatorcontrib>Wei Kuang</creatorcontrib><creatorcontrib>Nianlong Luo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wei Kuang</au><au>Nianlong Luo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>User interests mining based on Topic Map</atitle><btitle>2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery</btitle><stitle>FSKD</stitle><date>2010-08</date><risdate>2010</risdate><volume>5</volume><spage>2399</spage><epage>2402</epage><pages>2399-2402</pages><isbn>1424459311</isbn><isbn>9781424459315</isbn><eisbn>1424459338</eisbn><eisbn>9781424459339</eisbn><eisbn>1424459346</eisbn><eisbn>9781424459346</eisbn><abstract>In this paper, we propose a method for mining user interests based on topic map in an e-learning system. It is now widely assumed that in personalized information area user interests plays an important role in document recommendation. User interests generally reflect the user background and topics of interests. Topic Maps is an ISO standard for the representation and interchange of knowledge, which builds a structured semantic web on the layer of information resources. In an e-learning system, topic maps can provide a good semantic model for the course document. Besides with the help of the topic maps, we can build an exact model for user interests. Because in an e-learning system, we can get the users' log and users' learning condition from the server. Thus the system adopts interest mining technology and can automatically identify the learner's interests and recommend interest-related resources. In this paper, we only focus on interests mining and interests modeling. The interest modeling system using new approach based on topic map is more effective.</abstract><pub>IEEE</pub><doi>10.1109/FSKD.2010.5569519</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424459311
ispartof 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, 2010, Vol.5, p.2399-2402
issn
language eng
recordid cdi_ieee_primary_5569519
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptation model
Analytical models
Computational modeling
Data mining
Data models
interest model
interests mining
Solid modeling
Support vector machine classification
topic map
title User interests mining based on Topic Map
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-16T05%3A11%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=User%20interests%20mining%20based%20on%20Topic%20Map&rft.btitle=2010%20Seventh%20International%20Conference%20on%20Fuzzy%20Systems%20and%20Knowledge%20Discovery&rft.au=Wei%20Kuang&rft.date=2010-08&rft.volume=5&rft.spage=2399&rft.epage=2402&rft.pages=2399-2402&rft.isbn=1424459311&rft.isbn_list=9781424459315&rft_id=info:doi/10.1109/FSKD.2010.5569519&rft_dat=%3Cieee_6IE%3E5569519%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424459338&rft.eisbn_list=9781424459339&rft.eisbn_list=1424459346&rft.eisbn_list=9781424459346&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5569519&rfr_iscdi=true