Application of Adaptive Neuro-Fuzzy Inference System to carrying capacity assessment for cage fish farm in Daya Bay, China

Marine cage fish farming has grown dramatically during the last three decades in coastal counties worldwide, however, its adverse environmental impact has already led to growing concerns. The control of carrying capacity is a key problem for cage fish farming. Based on the fish stock and eco-environ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Honghui Huang, Xiaoping Jia, Qin Lin, Genxi Guo, Yong Liu
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 818
container_issue
container_start_page 815
container_title
container_volume 2
creator Honghui Huang
Xiaoping Jia
Qin Lin
Genxi Guo
Yong Liu
description Marine cage fish farming has grown dramatically during the last three decades in coastal counties worldwide, however, its adverse environmental impact has already led to growing concerns. The control of carrying capacity is a key problem for cage fish farming. Based on the fish stock and eco-environment survey data in a cage fish farm area and its vicinity in Dapeng Ao Cove, Daya Bay, South China from June 2001 to October 2004 on a seasonal basis, an Adaptive Neuro-fuzzy Inference System (ANFIS) is used to learn and model the nonlinear relationships among the fish stock, surveyed biological and physicochemical factors. The ANFIS well simulate the effect of fish stock on the environmental factors of dissolved oxygen in water (DO), organic carbon content in sediment (SOC) and sulfide content in sediment (SSC). The computed theoretic maximum carrying capacity values were about 389~545t in different season within the restrict criteria of DO > 5mg/L, SOC
doi_str_mv 10.1109/FSKD.2010.5569213
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5569213</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5569213</ieee_id><sourcerecordid>5569213</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c472adc0170cceb1880d17c97ac80379c5b7c5e33459ed670ebd3e27ecc224f23</originalsourceid><addsrcrecordid>eNpFUMtOAjEUrTEmKvIBxs39AAf7mNKZJfJQItEF7Enp3EIN80hbTMrXO4kkns15LE5yDiGPjI4Yo-XLYv0xG3HaWynHJWfiityznOe5LIUorv8NY7dkGMI37ZFLToW8I-dJ1x2d0dG1DbQWJpXuovtB-MSTb7PF6XxOsGwsemwMwjqFiDXEFoz2Prlm34tOGxcT6BAwhBqbCLb1fb5HsC4cwGpfg2tgppOGV52eYXpwjX4gN1YfAw4vPCCbxXwzfc9WX2_L6WSVuZLGzOSK68pQpqgxuGNFQSumTKm0KahQpZE7ZSQK0S_Eaqwo7iqBXKExnOeWiwF5-qt1iLjtvKu1T9vLVeIXh_RedQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application of Adaptive Neuro-Fuzzy Inference System to carrying capacity assessment for cage fish farm in Daya Bay, China</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Honghui Huang ; Xiaoping Jia ; Qin Lin ; Genxi Guo ; Yong Liu</creator><creatorcontrib>Honghui Huang ; Xiaoping Jia ; Qin Lin ; Genxi Guo ; Yong Liu</creatorcontrib><description>Marine cage fish farming has grown dramatically during the last three decades in coastal counties worldwide, however, its adverse environmental impact has already led to growing concerns. The control of carrying capacity is a key problem for cage fish farming. Based on the fish stock and eco-environment survey data in a cage fish farm area and its vicinity in Dapeng Ao Cove, Daya Bay, South China from June 2001 to October 2004 on a seasonal basis, an Adaptive Neuro-fuzzy Inference System (ANFIS) is used to learn and model the nonlinear relationships among the fish stock, surveyed biological and physicochemical factors. The ANFIS well simulate the effect of fish stock on the environmental factors of dissolved oxygen in water (DO), organic carbon content in sediment (SOC) and sulfide content in sediment (SSC). The computed theoretic maximum carrying capacity values were about 389~545t in different season within the restrict criteria of DO &gt; 5mg/L, SOC &lt;; 3% and SSC &lt;; 600mg/kg. The actual fish stock in the cage fish farm was higher than the theoretic maximum carrying capacity value in most time except for in September and December 2001 and June 2002.</description><identifier>ISBN: 1424459311</identifier><identifier>ISBN: 9781424459315</identifier><identifier>EISBN: 1424459338</identifier><identifier>EISBN: 9781424459339</identifier><identifier>EISBN: 1424459346</identifier><identifier>EISBN: 9781424459346</identifier><identifier>DOI: 10.1109/FSKD.2010.5569213</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive Neuro-fuzzy Inference System ; Artificial neural networks ; Biological system modeling ; cage fish farming ; carrying capacity ; Computational modeling ; Data models ; Daya Bay ; Environmental factors ; Marine animals ; System-on-a-chip</subject><ispartof>2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, 2010, Vol.2, p.815-818</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5569213$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2057,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5569213$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Honghui Huang</creatorcontrib><creatorcontrib>Xiaoping Jia</creatorcontrib><creatorcontrib>Qin Lin</creatorcontrib><creatorcontrib>Genxi Guo</creatorcontrib><creatorcontrib>Yong Liu</creatorcontrib><title>Application of Adaptive Neuro-Fuzzy Inference System to carrying capacity assessment for cage fish farm in Daya Bay, China</title><title>2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery</title><addtitle>FSKD</addtitle><description>Marine cage fish farming has grown dramatically during the last three decades in coastal counties worldwide, however, its adverse environmental impact has already led to growing concerns. The control of carrying capacity is a key problem for cage fish farming. Based on the fish stock and eco-environment survey data in a cage fish farm area and its vicinity in Dapeng Ao Cove, Daya Bay, South China from June 2001 to October 2004 on a seasonal basis, an Adaptive Neuro-fuzzy Inference System (ANFIS) is used to learn and model the nonlinear relationships among the fish stock, surveyed biological and physicochemical factors. The ANFIS well simulate the effect of fish stock on the environmental factors of dissolved oxygen in water (DO), organic carbon content in sediment (SOC) and sulfide content in sediment (SSC). The computed theoretic maximum carrying capacity values were about 389~545t in different season within the restrict criteria of DO &gt; 5mg/L, SOC &lt;; 3% and SSC &lt;; 600mg/kg. The actual fish stock in the cage fish farm was higher than the theoretic maximum carrying capacity value in most time except for in September and December 2001 and June 2002.</description><subject>Adaptive Neuro-fuzzy Inference System</subject><subject>Artificial neural networks</subject><subject>Biological system modeling</subject><subject>cage fish farming</subject><subject>carrying capacity</subject><subject>Computational modeling</subject><subject>Data models</subject><subject>Daya Bay</subject><subject>Environmental factors</subject><subject>Marine animals</subject><subject>System-on-a-chip</subject><isbn>1424459311</isbn><isbn>9781424459315</isbn><isbn>1424459338</isbn><isbn>9781424459339</isbn><isbn>1424459346</isbn><isbn>9781424459346</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUMtOAjEUrTEmKvIBxs39AAf7mNKZJfJQItEF7Enp3EIN80hbTMrXO4kkns15LE5yDiGPjI4Yo-XLYv0xG3HaWynHJWfiityznOe5LIUorv8NY7dkGMI37ZFLToW8I-dJ1x2d0dG1DbQWJpXuovtB-MSTb7PF6XxOsGwsemwMwjqFiDXEFoz2Prlm34tOGxcT6BAwhBqbCLb1fb5HsC4cwGpfg2tgppOGV52eYXpwjX4gN1YfAw4vPCCbxXwzfc9WX2_L6WSVuZLGzOSK68pQpqgxuGNFQSumTKm0KahQpZE7ZSQK0S_Eaqwo7iqBXKExnOeWiwF5-qt1iLjtvKu1T9vLVeIXh_RedQ</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Honghui Huang</creator><creator>Xiaoping Jia</creator><creator>Qin Lin</creator><creator>Genxi Guo</creator><creator>Yong Liu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Application of Adaptive Neuro-Fuzzy Inference System to carrying capacity assessment for cage fish farm in Daya Bay, China</title><author>Honghui Huang ; Xiaoping Jia ; Qin Lin ; Genxi Guo ; Yong Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c472adc0170cceb1880d17c97ac80379c5b7c5e33459ed670ebd3e27ecc224f23</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive Neuro-fuzzy Inference System</topic><topic>Artificial neural networks</topic><topic>Biological system modeling</topic><topic>cage fish farming</topic><topic>carrying capacity</topic><topic>Computational modeling</topic><topic>Data models</topic><topic>Daya Bay</topic><topic>Environmental factors</topic><topic>Marine animals</topic><topic>System-on-a-chip</topic><toplevel>online_resources</toplevel><creatorcontrib>Honghui Huang</creatorcontrib><creatorcontrib>Xiaoping Jia</creatorcontrib><creatorcontrib>Qin Lin</creatorcontrib><creatorcontrib>Genxi Guo</creatorcontrib><creatorcontrib>Yong Liu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Honghui Huang</au><au>Xiaoping Jia</au><au>Qin Lin</au><au>Genxi Guo</au><au>Yong Liu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application of Adaptive Neuro-Fuzzy Inference System to carrying capacity assessment for cage fish farm in Daya Bay, China</atitle><btitle>2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery</btitle><stitle>FSKD</stitle><date>2010-08</date><risdate>2010</risdate><volume>2</volume><spage>815</spage><epage>818</epage><pages>815-818</pages><isbn>1424459311</isbn><isbn>9781424459315</isbn><eisbn>1424459338</eisbn><eisbn>9781424459339</eisbn><eisbn>1424459346</eisbn><eisbn>9781424459346</eisbn><abstract>Marine cage fish farming has grown dramatically during the last three decades in coastal counties worldwide, however, its adverse environmental impact has already led to growing concerns. The control of carrying capacity is a key problem for cage fish farming. Based on the fish stock and eco-environment survey data in a cage fish farm area and its vicinity in Dapeng Ao Cove, Daya Bay, South China from June 2001 to October 2004 on a seasonal basis, an Adaptive Neuro-fuzzy Inference System (ANFIS) is used to learn and model the nonlinear relationships among the fish stock, surveyed biological and physicochemical factors. The ANFIS well simulate the effect of fish stock on the environmental factors of dissolved oxygen in water (DO), organic carbon content in sediment (SOC) and sulfide content in sediment (SSC). The computed theoretic maximum carrying capacity values were about 389~545t in different season within the restrict criteria of DO &gt; 5mg/L, SOC &lt;; 3% and SSC &lt;; 600mg/kg. The actual fish stock in the cage fish farm was higher than the theoretic maximum carrying capacity value in most time except for in September and December 2001 and June 2002.</abstract><pub>IEEE</pub><doi>10.1109/FSKD.2010.5569213</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424459311
ispartof 2010 Seventh International Conference on Fuzzy Systems and Knowledge Discovery, 2010, Vol.2, p.815-818
issn
language eng
recordid cdi_ieee_primary_5569213
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive Neuro-fuzzy Inference System
Artificial neural networks
Biological system modeling
cage fish farming
carrying capacity
Computational modeling
Data models
Daya Bay
Environmental factors
Marine animals
System-on-a-chip
title Application of Adaptive Neuro-Fuzzy Inference System to carrying capacity assessment for cage fish farm in Daya Bay, China
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T07%3A13%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20of%20Adaptive%20Neuro-Fuzzy%20Inference%20System%20to%20carrying%20capacity%20assessment%20for%20cage%20fish%20farm%20in%20Daya%20Bay,%20China&rft.btitle=2010%20Seventh%20International%20Conference%20on%20Fuzzy%20Systems%20and%20Knowledge%20Discovery&rft.au=Honghui%20Huang&rft.date=2010-08&rft.volume=2&rft.spage=815&rft.epage=818&rft.pages=815-818&rft.isbn=1424459311&rft.isbn_list=9781424459315&rft_id=info:doi/10.1109/FSKD.2010.5569213&rft_dat=%3Cieee_6IE%3E5569213%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424459338&rft.eisbn_list=9781424459339&rft.eisbn_list=1424459346&rft.eisbn_list=9781424459346&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5569213&rfr_iscdi=true