Comparison of Feed-Forward Neural Network training algorithms for oscillometric blood pressure estimation

Feed-Forward Neural Network (FFNN) has recently been utilized to estimate blood pressure (BP) from the oscillometric measurements. However, there has been no study till now that consolidated the role played by the different neural network (NN) training algorithms in affecting the BP estimates. This...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Forouzanfar, M, Dajani, H R, Groza, V Z, Bolic, M, Rajan, S
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 123
container_issue
container_start_page 119
container_title
container_volume
creator Forouzanfar, M
Dajani, H R
Groza, V Z
Bolic, M
Rajan, S
description Feed-Forward Neural Network (FFNN) has recently been utilized to estimate blood pressure (BP) from the oscillometric measurements. However, there has been no study till now that consolidated the role played by the different neural network (NN) training algorithms in affecting the BP estimates. This paper compares the estimation errors in the BP due to ten different training algorithms belonging to three classes: steepest descent (with variable learning rate, with variable learning rate and momentum, resilient backpropagation), quasi-Newton (Broyden-Fletcher-Goldfarb-Shanno, one step secant, Levenberg-Marquardt) and conjugate gradient (Fletcher-Reeves update, Polak-Ribiére update, Powell-Beale restart, scaled conjugate gradient) that are used to train two separate NNs: one to estimate the systolic pressure and the other one to estimate the diastolic pressure. The different training algorithms are compared in terms of estimation error (mean absolute error and standard deviation of error) and training performance (training time and number of training iterations to reach the optimal weights). The NN-based approach is also compared with the conventional maximum amplitude algorithm.
doi_str_mv 10.1109/SOFA.2010.5565614
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5565614</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5565614</ieee_id><sourcerecordid>5565614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c138t-a6b64a86cf08ca745ce1bb91bb2352823f6824e8d7ad77e2226c1e18ad43f1cf3</originalsourceid><addsrcrecordid>eNo1kM9KAzEYxCMiqLUPIF7yAls3fzd7LMW1QrEH9Vyy2S81urspX1KKb--CdWAYfpcZGELuWblgrKwf37bNcsHLCZXSSjN5QW6Z5FJWtRHqkszryvyz0tdkntJXOUkqrkR9Q8IqDgeLIcWRRk8bgK5oIp4sdvQVjmj7KfIp4jfNaMMYxj21_T5iyJ9Doj4ijcmFvo8DZAyOtn2MHT0gpHREoJByGGwOcbwjV972CebnnJGP5ul9tS422-eX1XJTOCZMLqxutbRGO18aZyupHLC2rSdzobjhwmvDJZiusl1VAedcOwbM2E4Kz5wXM_Lw1xsAYHfAaR5_dud3xC_Te1sJ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Comparison of Feed-Forward Neural Network training algorithms for oscillometric blood pressure estimation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Forouzanfar, M ; Dajani, H R ; Groza, V Z ; Bolic, M ; Rajan, S</creator><creatorcontrib>Forouzanfar, M ; Dajani, H R ; Groza, V Z ; Bolic, M ; Rajan, S</creatorcontrib><description>Feed-Forward Neural Network (FFNN) has recently been utilized to estimate blood pressure (BP) from the oscillometric measurements. However, there has been no study till now that consolidated the role played by the different neural network (NN) training algorithms in affecting the BP estimates. This paper compares the estimation errors in the BP due to ten different training algorithms belonging to three classes: steepest descent (with variable learning rate, with variable learning rate and momentum, resilient backpropagation), quasi-Newton (Broyden-Fletcher-Goldfarb-Shanno, one step secant, Levenberg-Marquardt) and conjugate gradient (Fletcher-Reeves update, Polak-Ribiére update, Powell-Beale restart, scaled conjugate gradient) that are used to train two separate NNs: one to estimate the systolic pressure and the other one to estimate the diastolic pressure. The different training algorithms are compared in terms of estimation error (mean absolute error and standard deviation of error) and training performance (training time and number of training iterations to reach the optimal weights). The NN-based approach is also compared with the conventional maximum amplitude algorithm.</description><identifier>ISBN: 9781424479856</identifier><identifier>ISBN: 1424479851</identifier><identifier>EISBN: 1424479835</identifier><identifier>EISBN: 9781424479849</identifier><identifier>EISBN: 1424479843</identifier><identifier>EISBN: 9781424479832</identifier><identifier>DOI: 10.1109/SOFA.2010.5565614</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Biomedical monitoring ; Blood pressure ; blood pressure (BP) ; estimation ; Estimation error ; neural network (NN) ; Oscillators ; oscillometric waveforms ; Training ; training algorithms</subject><ispartof>4th International Workshop on Soft Computing Applications, 2010, p.119-123</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c138t-a6b64a86cf08ca745ce1bb91bb2352823f6824e8d7ad77e2226c1e18ad43f1cf3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5565614$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5565614$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Forouzanfar, M</creatorcontrib><creatorcontrib>Dajani, H R</creatorcontrib><creatorcontrib>Groza, V Z</creatorcontrib><creatorcontrib>Bolic, M</creatorcontrib><creatorcontrib>Rajan, S</creatorcontrib><title>Comparison of Feed-Forward Neural Network training algorithms for oscillometric blood pressure estimation</title><title>4th International Workshop on Soft Computing Applications</title><addtitle>SOFA</addtitle><description>Feed-Forward Neural Network (FFNN) has recently been utilized to estimate blood pressure (BP) from the oscillometric measurements. However, there has been no study till now that consolidated the role played by the different neural network (NN) training algorithms in affecting the BP estimates. This paper compares the estimation errors in the BP due to ten different training algorithms belonging to three classes: steepest descent (with variable learning rate, with variable learning rate and momentum, resilient backpropagation), quasi-Newton (Broyden-Fletcher-Goldfarb-Shanno, one step secant, Levenberg-Marquardt) and conjugate gradient (Fletcher-Reeves update, Polak-Ribiére update, Powell-Beale restart, scaled conjugate gradient) that are used to train two separate NNs: one to estimate the systolic pressure and the other one to estimate the diastolic pressure. The different training algorithms are compared in terms of estimation error (mean absolute error and standard deviation of error) and training performance (training time and number of training iterations to reach the optimal weights). The NN-based approach is also compared with the conventional maximum amplitude algorithm.</description><subject>Artificial neural networks</subject><subject>Biomedical monitoring</subject><subject>Blood pressure</subject><subject>blood pressure (BP)</subject><subject>estimation</subject><subject>Estimation error</subject><subject>neural network (NN)</subject><subject>Oscillators</subject><subject>oscillometric waveforms</subject><subject>Training</subject><subject>training algorithms</subject><isbn>9781424479856</isbn><isbn>1424479851</isbn><isbn>1424479835</isbn><isbn>9781424479849</isbn><isbn>1424479843</isbn><isbn>9781424479832</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kM9KAzEYxCMiqLUPIF7yAls3fzd7LMW1QrEH9Vyy2S81urspX1KKb--CdWAYfpcZGELuWblgrKwf37bNcsHLCZXSSjN5QW6Z5FJWtRHqkszryvyz0tdkntJXOUkqrkR9Q8IqDgeLIcWRRk8bgK5oIp4sdvQVjmj7KfIp4jfNaMMYxj21_T5iyJ9Doj4ijcmFvo8DZAyOtn2MHT0gpHREoJByGGwOcbwjV972CebnnJGP5ul9tS422-eX1XJTOCZMLqxutbRGO18aZyupHLC2rSdzobjhwmvDJZiusl1VAedcOwbM2E4Kz5wXM_Lw1xsAYHfAaR5_dud3xC_Te1sJ</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Forouzanfar, M</creator><creator>Dajani, H R</creator><creator>Groza, V Z</creator><creator>Bolic, M</creator><creator>Rajan, S</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>Comparison of Feed-Forward Neural Network training algorithms for oscillometric blood pressure estimation</title><author>Forouzanfar, M ; Dajani, H R ; Groza, V Z ; Bolic, M ; Rajan, S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c138t-a6b64a86cf08ca745ce1bb91bb2352823f6824e8d7ad77e2226c1e18ad43f1cf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Biomedical monitoring</topic><topic>Blood pressure</topic><topic>blood pressure (BP)</topic><topic>estimation</topic><topic>Estimation error</topic><topic>neural network (NN)</topic><topic>Oscillators</topic><topic>oscillometric waveforms</topic><topic>Training</topic><topic>training algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Forouzanfar, M</creatorcontrib><creatorcontrib>Dajani, H R</creatorcontrib><creatorcontrib>Groza, V Z</creatorcontrib><creatorcontrib>Bolic, M</creatorcontrib><creatorcontrib>Rajan, S</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Forouzanfar, M</au><au>Dajani, H R</au><au>Groza, V Z</au><au>Bolic, M</au><au>Rajan, S</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Comparison of Feed-Forward Neural Network training algorithms for oscillometric blood pressure estimation</atitle><btitle>4th International Workshop on Soft Computing Applications</btitle><stitle>SOFA</stitle><date>2010-07</date><risdate>2010</risdate><spage>119</spage><epage>123</epage><pages>119-123</pages><isbn>9781424479856</isbn><isbn>1424479851</isbn><eisbn>1424479835</eisbn><eisbn>9781424479849</eisbn><eisbn>1424479843</eisbn><eisbn>9781424479832</eisbn><abstract>Feed-Forward Neural Network (FFNN) has recently been utilized to estimate blood pressure (BP) from the oscillometric measurements. However, there has been no study till now that consolidated the role played by the different neural network (NN) training algorithms in affecting the BP estimates. This paper compares the estimation errors in the BP due to ten different training algorithms belonging to three classes: steepest descent (with variable learning rate, with variable learning rate and momentum, resilient backpropagation), quasi-Newton (Broyden-Fletcher-Goldfarb-Shanno, one step secant, Levenberg-Marquardt) and conjugate gradient (Fletcher-Reeves update, Polak-Ribiére update, Powell-Beale restart, scaled conjugate gradient) that are used to train two separate NNs: one to estimate the systolic pressure and the other one to estimate the diastolic pressure. The different training algorithms are compared in terms of estimation error (mean absolute error and standard deviation of error) and training performance (training time and number of training iterations to reach the optimal weights). The NN-based approach is also compared with the conventional maximum amplitude algorithm.</abstract><pub>IEEE</pub><doi>10.1109/SOFA.2010.5565614</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424479856
ispartof 4th International Workshop on Soft Computing Applications, 2010, p.119-123
issn
language eng
recordid cdi_ieee_primary_5565614
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Biomedical monitoring
Blood pressure
blood pressure (BP)
estimation
Estimation error
neural network (NN)
Oscillators
oscillometric waveforms
Training
training algorithms
title Comparison of Feed-Forward Neural Network training algorithms for oscillometric blood pressure estimation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T20%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Comparison%20of%20Feed-Forward%20Neural%20Network%20training%20algorithms%20for%20oscillometric%20blood%20pressure%20estimation&rft.btitle=4th%20International%20Workshop%20on%20Soft%20Computing%20Applications&rft.au=Forouzanfar,%20M&rft.date=2010-07&rft.spage=119&rft.epage=123&rft.pages=119-123&rft.isbn=9781424479856&rft.isbn_list=1424479851&rft_id=info:doi/10.1109/SOFA.2010.5565614&rft_dat=%3Cieee_6IE%3E5565614%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424479835&rft.eisbn_list=9781424479849&rft.eisbn_list=1424479843&rft.eisbn_list=9781424479832&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5565614&rfr_iscdi=true