Improved multi-scale principal components analysis with applications to process monitoring
Multi-scale monitoring approaches, which combine principal component analysis (PCA) and wavelet analysis, have received considerable attention. These approaches are potentially very efficient for detecting and analyzing diverse ranges of faults and disturbances in chemical processes. An improved mul...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 226 |
---|---|
container_issue | |
container_start_page | 222 |
container_title | |
container_volume | |
creator | Luyue Xia Haitian Pan |
description | Multi-scale monitoring approaches, which combine principal component analysis (PCA) and wavelet analysis, have received considerable attention. These approaches are potentially very efficient for detecting and analyzing diverse ranges of faults and disturbances in chemical processes. An improved multi-scale principal component analysis (MSPCA) is proposed for polymerization process monitoring. Improved MSPCA simultaneously extracts both, cross correlation across the variable and auto-correlation within a variable. Using wavelets, the individual variable are decomposed into approximations and details at different scales. Contributions from each scale are collected in separate matrices, and a PCA model is then constructed to extract correlation at each scale. The proposed improved multi-scale method is successfully applied into fault detection of polymerization process. |
doi_str_mv | 10.1109/ICICIP.2010.5565258 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5565258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5565258</ieee_id><sourcerecordid>5565258</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d1a7685a42d8f62512a69b72bac75b98cdb4502ba96721f0a290e405bd4bff513</originalsourceid><addsrcrecordid>eNpVkM1KAzEUhSMiKHWeoJu8wNQkTSaTpRR_Bgq66MpNuclkNJJJwiQqfXsDduO9i8t34RwOB6E1JRtKibobdnVfN4zUhxCdYKK_QI2SPeWMc0m4Epf_WNJr1OT8SepwwahSN-htmNMSv-2I5y9fXJsNeIvT4oJxCTw2cU4x2FAyhgD-lF3GP658YEjJOwPFxZBxiVUSjc0ZzzG4Eqv-_RZdTeCzbc53hQ6PD4fdc7t_eRp29_vWKVLakYLsegGcjf3UMUEZdEpLpsFIoVVvRs0Fqag6yehEgCliORF65HqaBN2u0PrP1llrjzX5DMvpeC5k-ws7ElZ2</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improved multi-scale principal components analysis with applications to process monitoring</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Luyue Xia ; Haitian Pan</creator><creatorcontrib>Luyue Xia ; Haitian Pan</creatorcontrib><description>Multi-scale monitoring approaches, which combine principal component analysis (PCA) and wavelet analysis, have received considerable attention. These approaches are potentially very efficient for detecting and analyzing diverse ranges of faults and disturbances in chemical processes. An improved multi-scale principal component analysis (MSPCA) is proposed for polymerization process monitoring. Improved MSPCA simultaneously extracts both, cross correlation across the variable and auto-correlation within a variable. Using wavelets, the individual variable are decomposed into approximations and details at different scales. Contributions from each scale are collected in separate matrices, and a PCA model is then constructed to extract correlation at each scale. The proposed improved multi-scale method is successfully applied into fault detection of polymerization process.</description><identifier>ISBN: 9781424470471</identifier><identifier>ISBN: 1424470471</identifier><identifier>EISBN: 9781424470495</identifier><identifier>EISBN: 9781424470501</identifier><identifier>EISBN: 1424470501</identifier><identifier>EISBN: 1424470498</identifier><identifier>DOI: 10.1109/ICICIP.2010.5565258</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fault detection ; Monitoring ; Polymers ; Principal component analysis ; Process control ; Wavelet analysis ; Wavelet transforms</subject><ispartof>2010 International Conference on Intelligent Control and Information Processing, 2010, p.222-226</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5565258$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5565258$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Luyue Xia</creatorcontrib><creatorcontrib>Haitian Pan</creatorcontrib><title>Improved multi-scale principal components analysis with applications to process monitoring</title><title>2010 International Conference on Intelligent Control and Information Processing</title><addtitle>ICICIP</addtitle><description>Multi-scale monitoring approaches, which combine principal component analysis (PCA) and wavelet analysis, have received considerable attention. These approaches are potentially very efficient for detecting and analyzing diverse ranges of faults and disturbances in chemical processes. An improved multi-scale principal component analysis (MSPCA) is proposed for polymerization process monitoring. Improved MSPCA simultaneously extracts both, cross correlation across the variable and auto-correlation within a variable. Using wavelets, the individual variable are decomposed into approximations and details at different scales. Contributions from each scale are collected in separate matrices, and a PCA model is then constructed to extract correlation at each scale. The proposed improved multi-scale method is successfully applied into fault detection of polymerization process.</description><subject>Fault detection</subject><subject>Monitoring</subject><subject>Polymers</subject><subject>Principal component analysis</subject><subject>Process control</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><isbn>9781424470471</isbn><isbn>1424470471</isbn><isbn>9781424470495</isbn><isbn>9781424470501</isbn><isbn>1424470501</isbn><isbn>1424470498</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1KAzEUhSMiKHWeoJu8wNQkTSaTpRR_Bgq66MpNuclkNJJJwiQqfXsDduO9i8t34RwOB6E1JRtKibobdnVfN4zUhxCdYKK_QI2SPeWMc0m4Epf_WNJr1OT8SepwwahSN-htmNMSv-2I5y9fXJsNeIvT4oJxCTw2cU4x2FAyhgD-lF3GP658YEjJOwPFxZBxiVUSjc0ZzzG4Eqv-_RZdTeCzbc53hQ6PD4fdc7t_eRp29_vWKVLakYLsegGcjf3UMUEZdEpLpsFIoVVvRs0Fqag6yehEgCliORF65HqaBN2u0PrP1llrjzX5DMvpeC5k-ws7ElZ2</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Luyue Xia</creator><creator>Haitian Pan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Improved multi-scale principal components analysis with applications to process monitoring</title><author>Luyue Xia ; Haitian Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d1a7685a42d8f62512a69b72bac75b98cdb4502ba96721f0a290e405bd4bff513</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Fault detection</topic><topic>Monitoring</topic><topic>Polymers</topic><topic>Principal component analysis</topic><topic>Process control</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Luyue Xia</creatorcontrib><creatorcontrib>Haitian Pan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luyue Xia</au><au>Haitian Pan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved multi-scale principal components analysis with applications to process monitoring</atitle><btitle>2010 International Conference on Intelligent Control and Information Processing</btitle><stitle>ICICIP</stitle><date>2010-08</date><risdate>2010</risdate><spage>222</spage><epage>226</epage><pages>222-226</pages><isbn>9781424470471</isbn><isbn>1424470471</isbn><eisbn>9781424470495</eisbn><eisbn>9781424470501</eisbn><eisbn>1424470501</eisbn><eisbn>1424470498</eisbn><abstract>Multi-scale monitoring approaches, which combine principal component analysis (PCA) and wavelet analysis, have received considerable attention. These approaches are potentially very efficient for detecting and analyzing diverse ranges of faults and disturbances in chemical processes. An improved multi-scale principal component analysis (MSPCA) is proposed for polymerization process monitoring. Improved MSPCA simultaneously extracts both, cross correlation across the variable and auto-correlation within a variable. Using wavelets, the individual variable are decomposed into approximations and details at different scales. Contributions from each scale are collected in separate matrices, and a PCA model is then constructed to extract correlation at each scale. The proposed improved multi-scale method is successfully applied into fault detection of polymerization process.</abstract><pub>IEEE</pub><doi>10.1109/ICICIP.2010.5565258</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424470471 |
ispartof | 2010 International Conference on Intelligent Control and Information Processing, 2010, p.222-226 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5565258 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Fault detection Monitoring Polymers Principal component analysis Process control Wavelet analysis Wavelet transforms |
title | Improved multi-scale principal components analysis with applications to process monitoring |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20multi-scale%20principal%20components%20analysis%20with%20applications%20to%20process%20monitoring&rft.btitle=2010%20International%20Conference%20on%20Intelligent%20Control%20and%20Information%20Processing&rft.au=Luyue%20Xia&rft.date=2010-08&rft.spage=222&rft.epage=226&rft.pages=222-226&rft.isbn=9781424470471&rft.isbn_list=1424470471&rft_id=info:doi/10.1109/ICICIP.2010.5565258&rft_dat=%3Cieee_6IE%3E5565258%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424470495&rft.eisbn_list=9781424470501&rft.eisbn_list=1424470501&rft.eisbn_list=1424470498&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5565258&rfr_iscdi=true |