Improved multi-scale principal components analysis with applications to process monitoring

Multi-scale monitoring approaches, which combine principal component analysis (PCA) and wavelet analysis, have received considerable attention. These approaches are potentially very efficient for detecting and analyzing diverse ranges of faults and disturbances in chemical processes. An improved mul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Luyue Xia, Haitian Pan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 226
container_issue
container_start_page 222
container_title
container_volume
creator Luyue Xia
Haitian Pan
description Multi-scale monitoring approaches, which combine principal component analysis (PCA) and wavelet analysis, have received considerable attention. These approaches are potentially very efficient for detecting and analyzing diverse ranges of faults and disturbances in chemical processes. An improved multi-scale principal component analysis (MSPCA) is proposed for polymerization process monitoring. Improved MSPCA simultaneously extracts both, cross correlation across the variable and auto-correlation within a variable. Using wavelets, the individual variable are decomposed into approximations and details at different scales. Contributions from each scale are collected in separate matrices, and a PCA model is then constructed to extract correlation at each scale. The proposed improved multi-scale method is successfully applied into fault detection of polymerization process.
doi_str_mv 10.1109/ICICIP.2010.5565258
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5565258</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5565258</ieee_id><sourcerecordid>5565258</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d1a7685a42d8f62512a69b72bac75b98cdb4502ba96721f0a290e405bd4bff513</originalsourceid><addsrcrecordid>eNpVkM1KAzEUhSMiKHWeoJu8wNQkTSaTpRR_Bgq66MpNuclkNJJJwiQqfXsDduO9i8t34RwOB6E1JRtKibobdnVfN4zUhxCdYKK_QI2SPeWMc0m4Epf_WNJr1OT8SepwwahSN-htmNMSv-2I5y9fXJsNeIvT4oJxCTw2cU4x2FAyhgD-lF3GP658YEjJOwPFxZBxiVUSjc0ZzzG4Eqv-_RZdTeCzbc53hQ6PD4fdc7t_eRp29_vWKVLakYLsegGcjf3UMUEZdEpLpsFIoVVvRs0Fqag6yehEgCliORF65HqaBN2u0PrP1llrjzX5DMvpeC5k-ws7ElZ2</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Improved multi-scale principal components analysis with applications to process monitoring</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Luyue Xia ; Haitian Pan</creator><creatorcontrib>Luyue Xia ; Haitian Pan</creatorcontrib><description>Multi-scale monitoring approaches, which combine principal component analysis (PCA) and wavelet analysis, have received considerable attention. These approaches are potentially very efficient for detecting and analyzing diverse ranges of faults and disturbances in chemical processes. An improved multi-scale principal component analysis (MSPCA) is proposed for polymerization process monitoring. Improved MSPCA simultaneously extracts both, cross correlation across the variable and auto-correlation within a variable. Using wavelets, the individual variable are decomposed into approximations and details at different scales. Contributions from each scale are collected in separate matrices, and a PCA model is then constructed to extract correlation at each scale. The proposed improved multi-scale method is successfully applied into fault detection of polymerization process.</description><identifier>ISBN: 9781424470471</identifier><identifier>ISBN: 1424470471</identifier><identifier>EISBN: 9781424470495</identifier><identifier>EISBN: 9781424470501</identifier><identifier>EISBN: 1424470501</identifier><identifier>EISBN: 1424470498</identifier><identifier>DOI: 10.1109/ICICIP.2010.5565258</identifier><language>eng</language><publisher>IEEE</publisher><subject>Fault detection ; Monitoring ; Polymers ; Principal component analysis ; Process control ; Wavelet analysis ; Wavelet transforms</subject><ispartof>2010 International Conference on Intelligent Control and Information Processing, 2010, p.222-226</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5565258$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5565258$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Luyue Xia</creatorcontrib><creatorcontrib>Haitian Pan</creatorcontrib><title>Improved multi-scale principal components analysis with applications to process monitoring</title><title>2010 International Conference on Intelligent Control and Information Processing</title><addtitle>ICICIP</addtitle><description>Multi-scale monitoring approaches, which combine principal component analysis (PCA) and wavelet analysis, have received considerable attention. These approaches are potentially very efficient for detecting and analyzing diverse ranges of faults and disturbances in chemical processes. An improved multi-scale principal component analysis (MSPCA) is proposed for polymerization process monitoring. Improved MSPCA simultaneously extracts both, cross correlation across the variable and auto-correlation within a variable. Using wavelets, the individual variable are decomposed into approximations and details at different scales. Contributions from each scale are collected in separate matrices, and a PCA model is then constructed to extract correlation at each scale. The proposed improved multi-scale method is successfully applied into fault detection of polymerization process.</description><subject>Fault detection</subject><subject>Monitoring</subject><subject>Polymers</subject><subject>Principal component analysis</subject><subject>Process control</subject><subject>Wavelet analysis</subject><subject>Wavelet transforms</subject><isbn>9781424470471</isbn><isbn>1424470471</isbn><isbn>9781424470495</isbn><isbn>9781424470501</isbn><isbn>1424470501</isbn><isbn>1424470498</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1KAzEUhSMiKHWeoJu8wNQkTSaTpRR_Bgq66MpNuclkNJJJwiQqfXsDduO9i8t34RwOB6E1JRtKibobdnVfN4zUhxCdYKK_QI2SPeWMc0m4Epf_WNJr1OT8SepwwahSN-htmNMSv-2I5y9fXJsNeIvT4oJxCTw2cU4x2FAyhgD-lF3GP658YEjJOwPFxZBxiVUSjc0ZzzG4Eqv-_RZdTeCzbc53hQ6PD4fdc7t_eRp29_vWKVLakYLsegGcjf3UMUEZdEpLpsFIoVVvRs0Fqag6yehEgCliORF65HqaBN2u0PrP1llrjzX5DMvpeC5k-ws7ElZ2</recordid><startdate>201008</startdate><enddate>201008</enddate><creator>Luyue Xia</creator><creator>Haitian Pan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201008</creationdate><title>Improved multi-scale principal components analysis with applications to process monitoring</title><author>Luyue Xia ; Haitian Pan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d1a7685a42d8f62512a69b72bac75b98cdb4502ba96721f0a290e405bd4bff513</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Fault detection</topic><topic>Monitoring</topic><topic>Polymers</topic><topic>Principal component analysis</topic><topic>Process control</topic><topic>Wavelet analysis</topic><topic>Wavelet transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Luyue Xia</creatorcontrib><creatorcontrib>Haitian Pan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Luyue Xia</au><au>Haitian Pan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Improved multi-scale principal components analysis with applications to process monitoring</atitle><btitle>2010 International Conference on Intelligent Control and Information Processing</btitle><stitle>ICICIP</stitle><date>2010-08</date><risdate>2010</risdate><spage>222</spage><epage>226</epage><pages>222-226</pages><isbn>9781424470471</isbn><isbn>1424470471</isbn><eisbn>9781424470495</eisbn><eisbn>9781424470501</eisbn><eisbn>1424470501</eisbn><eisbn>1424470498</eisbn><abstract>Multi-scale monitoring approaches, which combine principal component analysis (PCA) and wavelet analysis, have received considerable attention. These approaches are potentially very efficient for detecting and analyzing diverse ranges of faults and disturbances in chemical processes. An improved multi-scale principal component analysis (MSPCA) is proposed for polymerization process monitoring. Improved MSPCA simultaneously extracts both, cross correlation across the variable and auto-correlation within a variable. Using wavelets, the individual variable are decomposed into approximations and details at different scales. Contributions from each scale are collected in separate matrices, and a PCA model is then constructed to extract correlation at each scale. The proposed improved multi-scale method is successfully applied into fault detection of polymerization process.</abstract><pub>IEEE</pub><doi>10.1109/ICICIP.2010.5565258</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424470471
ispartof 2010 International Conference on Intelligent Control and Information Processing, 2010, p.222-226
issn
language eng
recordid cdi_ieee_primary_5565258
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Fault detection
Monitoring
Polymers
Principal component analysis
Process control
Wavelet analysis
Wavelet transforms
title Improved multi-scale principal components analysis with applications to process monitoring
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T18%3A08%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Improved%20multi-scale%20principal%20components%20analysis%20with%20applications%20to%20process%20monitoring&rft.btitle=2010%20International%20Conference%20on%20Intelligent%20Control%20and%20Information%20Processing&rft.au=Luyue%20Xia&rft.date=2010-08&rft.spage=222&rft.epage=226&rft.pages=222-226&rft.isbn=9781424470471&rft.isbn_list=1424470471&rft_id=info:doi/10.1109/ICICIP.2010.5565258&rft_dat=%3Cieee_6IE%3E5565258%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424470495&rft.eisbn_list=9781424470501&rft.eisbn_list=1424470501&rft.eisbn_list=1424470498&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5565258&rfr_iscdi=true