A Markov chain model for system forecast and evaluation

In order to forecast and evaluate a system more reasonably, this paper establishes a mathematical model, based on the theory that the finite irreducible aperiodic homogeneous Markov chain has one and only stationary distribution. At first, calculates the proportions of every sort of members in a sys...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Lifei Jiao, Qiao Liu, Benliang Xie, Hua Zhou
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 35
container_issue
container_start_page 31
container_title
container_volume 6
creator Lifei Jiao
Qiao Liu
Benliang Xie
Hua Zhou
description In order to forecast and evaluate a system more reasonably, this paper establishes a mathematical model, based on the theory that the finite irreducible aperiodic homogeneous Markov chain has one and only stationary distribution. At first, calculates the proportions of every sort of members in a system, as the initial distribution. After one unit of time, ciphers the system's state distribution again. According to the two different state distributions, the transition probability matrix can be got through cyphering. Then we can compute the final state distribution of the system when it becomes stable, using the properties of homogeneous Markov chain. So the system can be predicted. In addition we illustrate the application of this model through an example. After verification, the model is more objective and appropriate than the traditional methods.
doi_str_mv 10.1109/ICCSIT.2010.5563561
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5563561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5563561</ieee_id><sourcerecordid>5563561</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-205026b6e46b8087fd6530a0f4166ebc05875b0b076432aaf41d65b97293c4723</originalsourceid><addsrcrecordid>eNpNT8lOwzAUNEKVgJIv6MU_0PL87OflWEUskYo4UM6VnTgikAXFoVL_niB6YC6zaDTSMLYSsBEC3F2R56_FfoMwB0RakhYXLHPGCoVKESlwl_-9NG7BbhDAOWmlwiuWpfQBMxQhWbxmZsuf_fg5HHn57pued0MVW14PI0-nNMXuV8bSp4n7vuLx6NtvPzVDf8sWtW9TzM68ZG8P9_v8ab17eSzy7W7dCEPTGoEAddBR6WDBmrrSJMFDrYTWMZRA1lCAAEYrid7P-dwIzqCTpTIol2z1t9vEGA9fY9P58XQ4f5c_w_tI3g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Markov chain model for system forecast and evaluation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lifei Jiao ; Qiao Liu ; Benliang Xie ; Hua Zhou</creator><creatorcontrib>Lifei Jiao ; Qiao Liu ; Benliang Xie ; Hua Zhou</creatorcontrib><description>In order to forecast and evaluate a system more reasonably, this paper establishes a mathematical model, based on the theory that the finite irreducible aperiodic homogeneous Markov chain has one and only stationary distribution. At first, calculates the proportions of every sort of members in a system, as the initial distribution. After one unit of time, ciphers the system's state distribution again. According to the two different state distributions, the transition probability matrix can be got through cyphering. Then we can compute the final state distribution of the system when it becomes stable, using the properties of homogeneous Markov chain. So the system can be predicted. In addition we illustrate the application of this model through an example. After verification, the model is more objective and appropriate than the traditional methods.</description><identifier>ISBN: 9781424455379</identifier><identifier>ISBN: 1424455375</identifier><identifier>EISBN: 9781424455409</identifier><identifier>EISBN: 9781424455393</identifier><identifier>EISBN: 1424455405</identifier><identifier>EISBN: 1424455391</identifier><identifier>DOI: 10.1109/ICCSIT.2010.5563561</identifier><identifier>LCCN: 2009938342</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; forecast and evaluate ; Markov chain ; Mathematical model ; stationary distribution ; Transition probability matrix</subject><ispartof>2010 3rd International Conference on Computer Science and Information Technology, 2010, Vol.6, p.31-35</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5563561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5563561$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lifei Jiao</creatorcontrib><creatorcontrib>Qiao Liu</creatorcontrib><creatorcontrib>Benliang Xie</creatorcontrib><creatorcontrib>Hua Zhou</creatorcontrib><title>A Markov chain model for system forecast and evaluation</title><title>2010 3rd International Conference on Computer Science and Information Technology</title><addtitle>ICCSIT</addtitle><description>In order to forecast and evaluate a system more reasonably, this paper establishes a mathematical model, based on the theory that the finite irreducible aperiodic homogeneous Markov chain has one and only stationary distribution. At first, calculates the proportions of every sort of members in a system, as the initial distribution. After one unit of time, ciphers the system's state distribution again. According to the two different state distributions, the transition probability matrix can be got through cyphering. Then we can compute the final state distribution of the system when it becomes stable, using the properties of homogeneous Markov chain. So the system can be predicted. In addition we illustrate the application of this model through an example. After verification, the model is more objective and appropriate than the traditional methods.</description><subject>Equations</subject><subject>forecast and evaluate</subject><subject>Markov chain</subject><subject>Mathematical model</subject><subject>stationary distribution</subject><subject>Transition probability matrix</subject><isbn>9781424455379</isbn><isbn>1424455375</isbn><isbn>9781424455409</isbn><isbn>9781424455393</isbn><isbn>1424455405</isbn><isbn>1424455391</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNT8lOwzAUNEKVgJIv6MU_0PL87OflWEUskYo4UM6VnTgikAXFoVL_niB6YC6zaDTSMLYSsBEC3F2R56_FfoMwB0RakhYXLHPGCoVKESlwl_-9NG7BbhDAOWmlwiuWpfQBMxQhWbxmZsuf_fg5HHn57pued0MVW14PI0-nNMXuV8bSp4n7vuLx6NtvPzVDf8sWtW9TzM68ZG8P9_v8ab17eSzy7W7dCEPTGoEAddBR6WDBmrrSJMFDrYTWMZRA1lCAAEYrid7P-dwIzqCTpTIol2z1t9vEGA9fY9P58XQ4f5c_w_tI3g</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Lifei Jiao</creator><creator>Qiao Liu</creator><creator>Benliang Xie</creator><creator>Hua Zhou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>A Markov chain model for system forecast and evaluation</title><author>Lifei Jiao ; Qiao Liu ; Benliang Xie ; Hua Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-205026b6e46b8087fd6530a0f4166ebc05875b0b076432aaf41d65b97293c4723</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Equations</topic><topic>forecast and evaluate</topic><topic>Markov chain</topic><topic>Mathematical model</topic><topic>stationary distribution</topic><topic>Transition probability matrix</topic><toplevel>online_resources</toplevel><creatorcontrib>Lifei Jiao</creatorcontrib><creatorcontrib>Qiao Liu</creatorcontrib><creatorcontrib>Benliang Xie</creatorcontrib><creatorcontrib>Hua Zhou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lifei Jiao</au><au>Qiao Liu</au><au>Benliang Xie</au><au>Hua Zhou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Markov chain model for system forecast and evaluation</atitle><btitle>2010 3rd International Conference on Computer Science and Information Technology</btitle><stitle>ICCSIT</stitle><date>2010-07</date><risdate>2010</risdate><volume>6</volume><spage>31</spage><epage>35</epage><pages>31-35</pages><isbn>9781424455379</isbn><isbn>1424455375</isbn><eisbn>9781424455409</eisbn><eisbn>9781424455393</eisbn><eisbn>1424455405</eisbn><eisbn>1424455391</eisbn><abstract>In order to forecast and evaluate a system more reasonably, this paper establishes a mathematical model, based on the theory that the finite irreducible aperiodic homogeneous Markov chain has one and only stationary distribution. At first, calculates the proportions of every sort of members in a system, as the initial distribution. After one unit of time, ciphers the system's state distribution again. According to the two different state distributions, the transition probability matrix can be got through cyphering. Then we can compute the final state distribution of the system when it becomes stable, using the properties of homogeneous Markov chain. So the system can be predicted. In addition we illustrate the application of this model through an example. After verification, the model is more objective and appropriate than the traditional methods.</abstract><pub>IEEE</pub><doi>10.1109/ICCSIT.2010.5563561</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424455379
ispartof 2010 3rd International Conference on Computer Science and Information Technology, 2010, Vol.6, p.31-35
issn
language eng
recordid cdi_ieee_primary_5563561
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Equations
forecast and evaluate
Markov chain
Mathematical model
stationary distribution
Transition probability matrix
title A Markov chain model for system forecast and evaluation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Markov%20chain%20model%20for%20system%20forecast%20and%20evaluation&rft.btitle=2010%203rd%20International%20Conference%20on%20Computer%20Science%20and%20Information%20Technology&rft.au=Lifei%20Jiao&rft.date=2010-07&rft.volume=6&rft.spage=31&rft.epage=35&rft.pages=31-35&rft.isbn=9781424455379&rft.isbn_list=1424455375&rft_id=info:doi/10.1109/ICCSIT.2010.5563561&rft_dat=%3Cieee_6IE%3E5563561%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424455409&rft.eisbn_list=9781424455393&rft.eisbn_list=1424455405&rft.eisbn_list=1424455391&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5563561&rfr_iscdi=true