A Markov chain model for system forecast and evaluation
In order to forecast and evaluate a system more reasonably, this paper establishes a mathematical model, based on the theory that the finite irreducible aperiodic homogeneous Markov chain has one and only stationary distribution. At first, calculates the proportions of every sort of members in a sys...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 35 |
---|---|
container_issue | |
container_start_page | 31 |
container_title | |
container_volume | 6 |
creator | Lifei Jiao Qiao Liu Benliang Xie Hua Zhou |
description | In order to forecast and evaluate a system more reasonably, this paper establishes a mathematical model, based on the theory that the finite irreducible aperiodic homogeneous Markov chain has one and only stationary distribution. At first, calculates the proportions of every sort of members in a system, as the initial distribution. After one unit of time, ciphers the system's state distribution again. According to the two different state distributions, the transition probability matrix can be got through cyphering. Then we can compute the final state distribution of the system when it becomes stable, using the properties of homogeneous Markov chain. So the system can be predicted. In addition we illustrate the application of this model through an example. After verification, the model is more objective and appropriate than the traditional methods. |
doi_str_mv | 10.1109/ICCSIT.2010.5563561 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5563561</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5563561</ieee_id><sourcerecordid>5563561</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-205026b6e46b8087fd6530a0f4166ebc05875b0b076432aaf41d65b97293c4723</originalsourceid><addsrcrecordid>eNpNT8lOwzAUNEKVgJIv6MU_0PL87OflWEUskYo4UM6VnTgikAXFoVL_niB6YC6zaDTSMLYSsBEC3F2R56_FfoMwB0RakhYXLHPGCoVKESlwl_-9NG7BbhDAOWmlwiuWpfQBMxQhWbxmZsuf_fg5HHn57pued0MVW14PI0-nNMXuV8bSp4n7vuLx6NtvPzVDf8sWtW9TzM68ZG8P9_v8ab17eSzy7W7dCEPTGoEAddBR6WDBmrrSJMFDrYTWMZRA1lCAAEYrid7P-dwIzqCTpTIol2z1t9vEGA9fY9P58XQ4f5c_w_tI3g</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A Markov chain model for system forecast and evaluation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Lifei Jiao ; Qiao Liu ; Benliang Xie ; Hua Zhou</creator><creatorcontrib>Lifei Jiao ; Qiao Liu ; Benliang Xie ; Hua Zhou</creatorcontrib><description>In order to forecast and evaluate a system more reasonably, this paper establishes a mathematical model, based on the theory that the finite irreducible aperiodic homogeneous Markov chain has one and only stationary distribution. At first, calculates the proportions of every sort of members in a system, as the initial distribution. After one unit of time, ciphers the system's state distribution again. According to the two different state distributions, the transition probability matrix can be got through cyphering. Then we can compute the final state distribution of the system when it becomes stable, using the properties of homogeneous Markov chain. So the system can be predicted. In addition we illustrate the application of this model through an example. After verification, the model is more objective and appropriate than the traditional methods.</description><identifier>ISBN: 9781424455379</identifier><identifier>ISBN: 1424455375</identifier><identifier>EISBN: 9781424455409</identifier><identifier>EISBN: 9781424455393</identifier><identifier>EISBN: 1424455405</identifier><identifier>EISBN: 1424455391</identifier><identifier>DOI: 10.1109/ICCSIT.2010.5563561</identifier><identifier>LCCN: 2009938342</identifier><language>eng</language><publisher>IEEE</publisher><subject>Equations ; forecast and evaluate ; Markov chain ; Mathematical model ; stationary distribution ; Transition probability matrix</subject><ispartof>2010 3rd International Conference on Computer Science and Information Technology, 2010, Vol.6, p.31-35</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5563561$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5563561$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Lifei Jiao</creatorcontrib><creatorcontrib>Qiao Liu</creatorcontrib><creatorcontrib>Benliang Xie</creatorcontrib><creatorcontrib>Hua Zhou</creatorcontrib><title>A Markov chain model for system forecast and evaluation</title><title>2010 3rd International Conference on Computer Science and Information Technology</title><addtitle>ICCSIT</addtitle><description>In order to forecast and evaluate a system more reasonably, this paper establishes a mathematical model, based on the theory that the finite irreducible aperiodic homogeneous Markov chain has one and only stationary distribution. At first, calculates the proportions of every sort of members in a system, as the initial distribution. After one unit of time, ciphers the system's state distribution again. According to the two different state distributions, the transition probability matrix can be got through cyphering. Then we can compute the final state distribution of the system when it becomes stable, using the properties of homogeneous Markov chain. So the system can be predicted. In addition we illustrate the application of this model through an example. After verification, the model is more objective and appropriate than the traditional methods.</description><subject>Equations</subject><subject>forecast and evaluate</subject><subject>Markov chain</subject><subject>Mathematical model</subject><subject>stationary distribution</subject><subject>Transition probability matrix</subject><isbn>9781424455379</isbn><isbn>1424455375</isbn><isbn>9781424455409</isbn><isbn>9781424455393</isbn><isbn>1424455405</isbn><isbn>1424455391</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNT8lOwzAUNEKVgJIv6MU_0PL87OflWEUskYo4UM6VnTgikAXFoVL_niB6YC6zaDTSMLYSsBEC3F2R56_FfoMwB0RakhYXLHPGCoVKESlwl_-9NG7BbhDAOWmlwiuWpfQBMxQhWbxmZsuf_fg5HHn57pued0MVW14PI0-nNMXuV8bSp4n7vuLx6NtvPzVDf8sWtW9TzM68ZG8P9_v8ab17eSzy7W7dCEPTGoEAddBR6WDBmrrSJMFDrYTWMZRA1lCAAEYrid7P-dwIzqCTpTIol2z1t9vEGA9fY9P58XQ4f5c_w_tI3g</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Lifei Jiao</creator><creator>Qiao Liu</creator><creator>Benliang Xie</creator><creator>Hua Zhou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>A Markov chain model for system forecast and evaluation</title><author>Lifei Jiao ; Qiao Liu ; Benliang Xie ; Hua Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-205026b6e46b8087fd6530a0f4166ebc05875b0b076432aaf41d65b97293c4723</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Equations</topic><topic>forecast and evaluate</topic><topic>Markov chain</topic><topic>Mathematical model</topic><topic>stationary distribution</topic><topic>Transition probability matrix</topic><toplevel>online_resources</toplevel><creatorcontrib>Lifei Jiao</creatorcontrib><creatorcontrib>Qiao Liu</creatorcontrib><creatorcontrib>Benliang Xie</creatorcontrib><creatorcontrib>Hua Zhou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lifei Jiao</au><au>Qiao Liu</au><au>Benliang Xie</au><au>Hua Zhou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A Markov chain model for system forecast and evaluation</atitle><btitle>2010 3rd International Conference on Computer Science and Information Technology</btitle><stitle>ICCSIT</stitle><date>2010-07</date><risdate>2010</risdate><volume>6</volume><spage>31</spage><epage>35</epage><pages>31-35</pages><isbn>9781424455379</isbn><isbn>1424455375</isbn><eisbn>9781424455409</eisbn><eisbn>9781424455393</eisbn><eisbn>1424455405</eisbn><eisbn>1424455391</eisbn><abstract>In order to forecast and evaluate a system more reasonably, this paper establishes a mathematical model, based on the theory that the finite irreducible aperiodic homogeneous Markov chain has one and only stationary distribution. At first, calculates the proportions of every sort of members in a system, as the initial distribution. After one unit of time, ciphers the system's state distribution again. According to the two different state distributions, the transition probability matrix can be got through cyphering. Then we can compute the final state distribution of the system when it becomes stable, using the properties of homogeneous Markov chain. So the system can be predicted. In addition we illustrate the application of this model through an example. After verification, the model is more objective and appropriate than the traditional methods.</abstract><pub>IEEE</pub><doi>10.1109/ICCSIT.2010.5563561</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424455379 |
ispartof | 2010 3rd International Conference on Computer Science and Information Technology, 2010, Vol.6, p.31-35 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5563561 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Equations forecast and evaluate Markov chain Mathematical model stationary distribution Transition probability matrix |
title | A Markov chain model for system forecast and evaluation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T05%3A54%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20Markov%20chain%20model%20for%20system%20forecast%20and%20evaluation&rft.btitle=2010%203rd%20International%20Conference%20on%20Computer%20Science%20and%20Information%20Technology&rft.au=Lifei%20Jiao&rft.date=2010-07&rft.volume=6&rft.spage=31&rft.epage=35&rft.pages=31-35&rft.isbn=9781424455379&rft.isbn_list=1424455375&rft_id=info:doi/10.1109/ICCSIT.2010.5563561&rft_dat=%3Cieee_6IE%3E5563561%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424455409&rft.eisbn_list=9781424455393&rft.eisbn_list=1424455405&rft.eisbn_list=1424455391&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5563561&rfr_iscdi=true |