Data Flow Driven Scheduling of BPEL Workflows Using Cloud Resources

In this paper, an approach to assign BPEL workflow steps to available resources is presented. The approach takes data dependencies between workflow steps and the utilization of resources at runtime into account. The developed scheduling algorithm simulates whether the makespan of workflows could be...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Dörnemann, Tim, Juhnke, Ernst, Noll, Thomas, Seiler, Dominik, Freisleben, Bernd
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 203
container_issue
container_start_page 196
container_title
container_volume
creator Dörnemann, Tim
Juhnke, Ernst
Noll, Thomas
Seiler, Dominik
Freisleben, Bernd
description In this paper, an approach to assign BPEL workflow steps to available resources is presented. The approach takes data dependencies between workflow steps and the utilization of resources at runtime into account. The developed scheduling algorithm simulates whether the makespan of workflows could be reduced by providing additional resources from a Cloud infrastructure. If yes, Cloud resources are automatically set up and used to increase throughput. The proposed approach does not require any changes to the BPEL standard. An implementation based on the ActiveBPEL engine and Amazon's Elastic Compute Cloud is presented. Experimental results for a real-life workflow from a medical application indicate that workflow execution times can be reduced significantly.
doi_str_mv 10.1109/CLOUD.2010.40
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5557994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5557994</ieee_id><sourcerecordid>5557994</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-61c512ee948282651688101c7db773ded69dceec320f8d8d81aab296ee13e7253</originalsourceid><addsrcrecordid>eNo9TstOwzAQNC-JUnLkxMU_0LJrx68jJC0gRSqCVhwrN95AIDQobkD8PUEgNIfRzoxmh7EzhCkiuIusWKzyqYDhTmGPnYDRTqUoQe2zkUDlJhodHLDEGYupSFMrwNjDf8-KY5bE-AIwVFilUI5Ylvud5_Om_eR5V3_Qlj-UzxT6pt4-8bbiV3ezgj-23Ws1RCJfxR89a9o-8HuKbd-VFE_ZUeWbSMkfj9lyPltmN5NicX2bXRaT2sFu-F8qFERumGWFVqitRcDShI0xMlDQLpREpRRQ2TAAvd8Ip4lQkhFKjtn5b21NROv3rn7z3ddaKWWcS-U3CQBNDg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Data Flow Driven Scheduling of BPEL Workflows Using Cloud Resources</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Dörnemann, Tim ; Juhnke, Ernst ; Noll, Thomas ; Seiler, Dominik ; Freisleben, Bernd</creator><creatorcontrib>Dörnemann, Tim ; Juhnke, Ernst ; Noll, Thomas ; Seiler, Dominik ; Freisleben, Bernd</creatorcontrib><description>In this paper, an approach to assign BPEL workflow steps to available resources is presented. The approach takes data dependencies between workflow steps and the utilization of resources at runtime into account. The developed scheduling algorithm simulates whether the makespan of workflows could be reduced by providing additional resources from a Cloud infrastructure. If yes, Cloud resources are automatically set up and used to increase throughput. The proposed approach does not require any changes to the BPEL standard. An implementation based on the ActiveBPEL engine and Amazon's Elastic Compute Cloud is presented. Experimental results for a real-life workflow from a medical application indicate that workflow execution times can be reduced significantly.</description><identifier>ISSN: 2159-6182</identifier><identifier>ISBN: 9781424482078</identifier><identifier>ISBN: 1424482070</identifier><identifier>EISSN: 2159-6190</identifier><identifier>EISBN: 0769541305</identifier><identifier>EISBN: 9780769541303</identifier><identifier>DOI: 10.1109/CLOUD.2010.40</identifier><language>eng</language><publisher>IEEE</publisher><subject>BPEL ; Business ; Cloud ; Clouds ; Data flow ; Engines ; genetic algorithm ; Runtime ; scheduling ; Scheduling algorithm ; SOA ; Web services ; workflow</subject><ispartof>2010 IEEE 3rd International Conference on Cloud Computing, 2010, p.196-203</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5557994$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5557994$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Dörnemann, Tim</creatorcontrib><creatorcontrib>Juhnke, Ernst</creatorcontrib><creatorcontrib>Noll, Thomas</creatorcontrib><creatorcontrib>Seiler, Dominik</creatorcontrib><creatorcontrib>Freisleben, Bernd</creatorcontrib><title>Data Flow Driven Scheduling of BPEL Workflows Using Cloud Resources</title><title>2010 IEEE 3rd International Conference on Cloud Computing</title><addtitle>ICCLOUD</addtitle><description>In this paper, an approach to assign BPEL workflow steps to available resources is presented. The approach takes data dependencies between workflow steps and the utilization of resources at runtime into account. The developed scheduling algorithm simulates whether the makespan of workflows could be reduced by providing additional resources from a Cloud infrastructure. If yes, Cloud resources are automatically set up and used to increase throughput. The proposed approach does not require any changes to the BPEL standard. An implementation based on the ActiveBPEL engine and Amazon's Elastic Compute Cloud is presented. Experimental results for a real-life workflow from a medical application indicate that workflow execution times can be reduced significantly.</description><subject>BPEL</subject><subject>Business</subject><subject>Cloud</subject><subject>Clouds</subject><subject>Data flow</subject><subject>Engines</subject><subject>genetic algorithm</subject><subject>Runtime</subject><subject>scheduling</subject><subject>Scheduling algorithm</subject><subject>SOA</subject><subject>Web services</subject><subject>workflow</subject><issn>2159-6182</issn><issn>2159-6190</issn><isbn>9781424482078</isbn><isbn>1424482070</isbn><isbn>0769541305</isbn><isbn>9780769541303</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9TstOwzAQNC-JUnLkxMU_0LJrx68jJC0gRSqCVhwrN95AIDQobkD8PUEgNIfRzoxmh7EzhCkiuIusWKzyqYDhTmGPnYDRTqUoQe2zkUDlJhodHLDEGYupSFMrwNjDf8-KY5bE-AIwVFilUI5Ylvud5_Om_eR5V3_Qlj-UzxT6pt4-8bbiV3ezgj-23Ws1RCJfxR89a9o-8HuKbd-VFE_ZUeWbSMkfj9lyPltmN5NicX2bXRaT2sFu-F8qFERumGWFVqitRcDShI0xMlDQLpREpRRQ2TAAvd8Ip4lQkhFKjtn5b21NROv3rn7z3ddaKWWcS-U3CQBNDg</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Dörnemann, Tim</creator><creator>Juhnke, Ernst</creator><creator>Noll, Thomas</creator><creator>Seiler, Dominik</creator><creator>Freisleben, Bernd</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>Data Flow Driven Scheduling of BPEL Workflows Using Cloud Resources</title><author>Dörnemann, Tim ; Juhnke, Ernst ; Noll, Thomas ; Seiler, Dominik ; Freisleben, Bernd</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-61c512ee948282651688101c7db773ded69dceec320f8d8d81aab296ee13e7253</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>BPEL</topic><topic>Business</topic><topic>Cloud</topic><topic>Clouds</topic><topic>Data flow</topic><topic>Engines</topic><topic>genetic algorithm</topic><topic>Runtime</topic><topic>scheduling</topic><topic>Scheduling algorithm</topic><topic>SOA</topic><topic>Web services</topic><topic>workflow</topic><toplevel>online_resources</toplevel><creatorcontrib>Dörnemann, Tim</creatorcontrib><creatorcontrib>Juhnke, Ernst</creatorcontrib><creatorcontrib>Noll, Thomas</creatorcontrib><creatorcontrib>Seiler, Dominik</creatorcontrib><creatorcontrib>Freisleben, Bernd</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Dörnemann, Tim</au><au>Juhnke, Ernst</au><au>Noll, Thomas</au><au>Seiler, Dominik</au><au>Freisleben, Bernd</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Data Flow Driven Scheduling of BPEL Workflows Using Cloud Resources</atitle><btitle>2010 IEEE 3rd International Conference on Cloud Computing</btitle><stitle>ICCLOUD</stitle><date>2010-07</date><risdate>2010</risdate><spage>196</spage><epage>203</epage><pages>196-203</pages><issn>2159-6182</issn><eissn>2159-6190</eissn><isbn>9781424482078</isbn><isbn>1424482070</isbn><eisbn>0769541305</eisbn><eisbn>9780769541303</eisbn><abstract>In this paper, an approach to assign BPEL workflow steps to available resources is presented. The approach takes data dependencies between workflow steps and the utilization of resources at runtime into account. The developed scheduling algorithm simulates whether the makespan of workflows could be reduced by providing additional resources from a Cloud infrastructure. If yes, Cloud resources are automatically set up and used to increase throughput. The proposed approach does not require any changes to the BPEL standard. An implementation based on the ActiveBPEL engine and Amazon's Elastic Compute Cloud is presented. Experimental results for a real-life workflow from a medical application indicate that workflow execution times can be reduced significantly.</abstract><pub>IEEE</pub><doi>10.1109/CLOUD.2010.40</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2159-6182
ispartof 2010 IEEE 3rd International Conference on Cloud Computing, 2010, p.196-203
issn 2159-6182
2159-6190
language eng
recordid cdi_ieee_primary_5557994
source IEEE Electronic Library (IEL) Conference Proceedings
subjects BPEL
Business
Cloud
Clouds
Data flow
Engines
genetic algorithm
Runtime
scheduling
Scheduling algorithm
SOA
Web services
workflow
title Data Flow Driven Scheduling of BPEL Workflows Using Cloud Resources
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T07%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Data%20Flow%20Driven%20Scheduling%20of%20BPEL%20Workflows%20Using%20Cloud%20Resources&rft.btitle=2010%20IEEE%203rd%20International%20Conference%20on%20Cloud%20Computing&rft.au=Do%CC%88rnemann,%20Tim&rft.date=2010-07&rft.spage=196&rft.epage=203&rft.pages=196-203&rft.issn=2159-6182&rft.eissn=2159-6190&rft.isbn=9781424482078&rft.isbn_list=1424482070&rft_id=info:doi/10.1109/CLOUD.2010.40&rft_dat=%3Cieee_6IE%3E5557994%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0769541305&rft.eisbn_list=9780769541303&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5557994&rfr_iscdi=true