A multi-sensor image registration approach based on edge-correlation
In this paper we propose a multi-sensor image registration approach based on edge-correlation. Firstly, edges of images are extracted and the longer edges are coded by modified Freeman. Secondly initializing correlation of chain code is calculated by integrating correlation coefficient and other met...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | V2-40 |
---|---|
container_issue | |
container_start_page | V2-36 |
container_title | |
container_volume | 2 |
creator | Niu Li-pi Yang Ying-yun Zhang Wen-hui Jiang Xiu-hua |
description | In this paper we propose a multi-sensor image registration approach based on edge-correlation. Firstly, edges of images are extracted and the longer edges are coded by modified Freeman. Secondly initializing correlation of chain code is calculated by integrating correlation coefficient and other methods, then the consistency detection succeeds by relative distance ratio histogram clustering detector based on center of edge correlation and angle histogram clustering detector based on average directional angle difference of edge correlation. During the calculation of average directional angle difference of edge correlation, modified histogram approach in this paper is much better than line-fitting approach. Finally accurate edge correlation pair is obtained, and then image registration parameter is attained by applying least square algorithm (LSM) in interrelated parts. The approach presented in this paper can register images of wide translational and rotary range. |
doi_str_mv | 10.1109/ICSPS.2010.5555228 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5555228</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5555228</ieee_id><sourcerecordid>5555228</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-84adc1b66fac9da6ba4f93beebe94b33847a0a5c8bedf03c5e0331178cd94c843</originalsourceid><addsrcrecordid>eNpVT81Kw0AYXBFBqXkBvewLpO7Pl2T3WOJfoaDQ3su3u1_qStqE3Xjw7Q3ai3MZZhiGGcbupFhKKezDut2-b5dKzLqaoZS5YIVtjAQFUBurq8t_WplrVuT8KWZApWoFN-xxxY9f_RTLTKc8JB6PeCCe6BDzlHCKw4njOKYB_Qd3mCnw2aFwoNIPKVH_G7llVx32mYozL9ju-WnXvpabt5d1u9qU0YqpNIDBS1fXHXobsHYIndWOyJEFp7WBBgVW3jgKndC-IqG1lI3xwYI3oBfs_q82EtF-TPPW9L0_X9c_c89OAg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>A multi-sensor image registration approach based on edge-correlation</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Niu Li-pi ; Yang Ying-yun ; Zhang Wen-hui ; Jiang Xiu-hua</creator><creatorcontrib>Niu Li-pi ; Yang Ying-yun ; Zhang Wen-hui ; Jiang Xiu-hua</creatorcontrib><description>In this paper we propose a multi-sensor image registration approach based on edge-correlation. Firstly, edges of images are extracted and the longer edges are coded by modified Freeman. Secondly initializing correlation of chain code is calculated by integrating correlation coefficient and other methods, then the consistency detection succeeds by relative distance ratio histogram clustering detector based on center of edge correlation and angle histogram clustering detector based on average directional angle difference of edge correlation. During the calculation of average directional angle difference of edge correlation, modified histogram approach in this paper is much better than line-fitting approach. Finally accurate edge correlation pair is obtained, and then image registration parameter is attained by applying least square algorithm (LSM) in interrelated parts. The approach presented in this paper can register images of wide translational and rotary range.</description><identifier>ISBN: 9781424468928</identifier><identifier>ISBN: 1424468922</identifier><identifier>EISBN: 9781424468935</identifier><identifier>EISBN: 1424468930</identifier><identifier>DOI: 10.1109/ICSPS.2010.5555228</identifier><language>eng</language><publisher>IEEE</publisher><subject>Correlation ; edge extract ; Feature extraction ; Histograms ; Image edge detection ; Image registration ; multi-sensor ; Pixel ; Signal processing algorithms</subject><ispartof>2010 2nd International Conference on Signal Processing Systems, 2010, Vol.2, p.V2-36-V2-40</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5555228$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5555228$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Niu Li-pi</creatorcontrib><creatorcontrib>Yang Ying-yun</creatorcontrib><creatorcontrib>Zhang Wen-hui</creatorcontrib><creatorcontrib>Jiang Xiu-hua</creatorcontrib><title>A multi-sensor image registration approach based on edge-correlation</title><title>2010 2nd International Conference on Signal Processing Systems</title><addtitle>ICSPS</addtitle><description>In this paper we propose a multi-sensor image registration approach based on edge-correlation. Firstly, edges of images are extracted and the longer edges are coded by modified Freeman. Secondly initializing correlation of chain code is calculated by integrating correlation coefficient and other methods, then the consistency detection succeeds by relative distance ratio histogram clustering detector based on center of edge correlation and angle histogram clustering detector based on average directional angle difference of edge correlation. During the calculation of average directional angle difference of edge correlation, modified histogram approach in this paper is much better than line-fitting approach. Finally accurate edge correlation pair is obtained, and then image registration parameter is attained by applying least square algorithm (LSM) in interrelated parts. The approach presented in this paper can register images of wide translational and rotary range.</description><subject>Correlation</subject><subject>edge extract</subject><subject>Feature extraction</subject><subject>Histograms</subject><subject>Image edge detection</subject><subject>Image registration</subject><subject>multi-sensor</subject><subject>Pixel</subject><subject>Signal processing algorithms</subject><isbn>9781424468928</isbn><isbn>1424468922</isbn><isbn>9781424468935</isbn><isbn>1424468930</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVT81Kw0AYXBFBqXkBvewLpO7Pl2T3WOJfoaDQ3su3u1_qStqE3Xjw7Q3ai3MZZhiGGcbupFhKKezDut2-b5dKzLqaoZS5YIVtjAQFUBurq8t_WplrVuT8KWZApWoFN-xxxY9f_RTLTKc8JB6PeCCe6BDzlHCKw4njOKYB_Qd3mCnw2aFwoNIPKVH_G7llVx32mYozL9ju-WnXvpabt5d1u9qU0YqpNIDBS1fXHXobsHYIndWOyJEFp7WBBgVW3jgKndC-IqG1lI3xwYI3oBfs_q82EtF-TPPW9L0_X9c_c89OAg</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Niu Li-pi</creator><creator>Yang Ying-yun</creator><creator>Zhang Wen-hui</creator><creator>Jiang Xiu-hua</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>A multi-sensor image registration approach based on edge-correlation</title><author>Niu Li-pi ; Yang Ying-yun ; Zhang Wen-hui ; Jiang Xiu-hua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-84adc1b66fac9da6ba4f93beebe94b33847a0a5c8bedf03c5e0331178cd94c843</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Correlation</topic><topic>edge extract</topic><topic>Feature extraction</topic><topic>Histograms</topic><topic>Image edge detection</topic><topic>Image registration</topic><topic>multi-sensor</topic><topic>Pixel</topic><topic>Signal processing algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Niu Li-pi</creatorcontrib><creatorcontrib>Yang Ying-yun</creatorcontrib><creatorcontrib>Zhang Wen-hui</creatorcontrib><creatorcontrib>Jiang Xiu-hua</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Niu Li-pi</au><au>Yang Ying-yun</au><au>Zhang Wen-hui</au><au>Jiang Xiu-hua</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>A multi-sensor image registration approach based on edge-correlation</atitle><btitle>2010 2nd International Conference on Signal Processing Systems</btitle><stitle>ICSPS</stitle><date>2010-07</date><risdate>2010</risdate><volume>2</volume><spage>V2-36</spage><epage>V2-40</epage><pages>V2-36-V2-40</pages><isbn>9781424468928</isbn><isbn>1424468922</isbn><eisbn>9781424468935</eisbn><eisbn>1424468930</eisbn><abstract>In this paper we propose a multi-sensor image registration approach based on edge-correlation. Firstly, edges of images are extracted and the longer edges are coded by modified Freeman. Secondly initializing correlation of chain code is calculated by integrating correlation coefficient and other methods, then the consistency detection succeeds by relative distance ratio histogram clustering detector based on center of edge correlation and angle histogram clustering detector based on average directional angle difference of edge correlation. During the calculation of average directional angle difference of edge correlation, modified histogram approach in this paper is much better than line-fitting approach. Finally accurate edge correlation pair is obtained, and then image registration parameter is attained by applying least square algorithm (LSM) in interrelated parts. The approach presented in this paper can register images of wide translational and rotary range.</abstract><pub>IEEE</pub><doi>10.1109/ICSPS.2010.5555228</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424468928 |
ispartof | 2010 2nd International Conference on Signal Processing Systems, 2010, Vol.2, p.V2-36-V2-40 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5555228 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Correlation edge extract Feature extraction Histograms Image edge detection Image registration multi-sensor Pixel Signal processing algorithms |
title | A multi-sensor image registration approach based on edge-correlation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A28%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=A%20multi-sensor%20image%20registration%20approach%20based%20on%20edge-correlation&rft.btitle=2010%202nd%20International%20Conference%20on%20Signal%20Processing%20Systems&rft.au=Niu%20Li-pi&rft.date=2010-07&rft.volume=2&rft.spage=V2-36&rft.epage=V2-40&rft.pages=V2-36-V2-40&rft.isbn=9781424468928&rft.isbn_list=1424468922&rft_id=info:doi/10.1109/ICSPS.2010.5555228&rft_dat=%3Cieee_6IE%3E5555228%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424468935&rft.eisbn_list=1424468930&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5555228&rfr_iscdi=true |