Global asymptotically stability of cellular neural networks with time-varying delay

A set of criteria is presented for the global asymptotically stability of delayed cellular neural networks by constructing suitable Lyapunov functionals, introducing many parameters and combining with the elementary inequality technique. Time-delay is frequently encountered in neural networks, and i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Guozhuang Liang, Xueli Wu, Wenxia Du
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5036
container_issue
container_start_page 5031
container_title
container_volume
creator Guozhuang Liang
Xueli Wu
Wenxia Du
description A set of criteria is presented for the global asymptotically stability of delayed cellular neural networks by constructing suitable Lyapunov functionals, introducing many parameters and combining with the elementary inequality technique. Time-delay is frequently encountered in neural networks, and it is often a source of instability and oscillations in a system. It is very important to research the stability of delayed neural network, especially for global asymptotically stability of the neural network with time-varying delay. In the letter, a novel method is proposed in this note for global asymptotically stability of cellular neural networks with time-varying delay. New delay-dependent global asymptotically stability conditions of cellular neural network with time-varying delay is presented by constructing Lyapunov function and using linear matrix inequality (LMI). Finally, numerical examples are given to demonstrate the effect of the proposed method.
doi_str_mv 10.1109/WCICA.2010.5554634
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5554634</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5554634</ieee_id><sourcerecordid>5554634</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-9ff1612de728d8c69dbcecca22ba23f2e1125d6692fa22fae3b3f21d871184ca3</originalsourceid><addsrcrecordid>eNotj0FLxDAUhONBUNb-Ab3kD3Tte03T9ihFV2HBg4rH5TV90WjaLk3Wpf_ewu5pmGEYvhHiFrI1QFbffzYvzcMas8UXRaF0ri5EUpcVKFRKl4D1lUhC-MmyDEqtUeO1eNv4sSUvKcz9Po7RGfJ-liFS67yLsxytNOz9wdMkBz5MS3fgeByn3yCPLn7L6HpO_2ia3fAlO_Y034hLSz5wctaV-Hh6fG-e0-3rZiHcpg7KIqa1taABOy6x6iqj6641bAwhtoS5RQbAotO6RrtkljhvlxS6qgSolKF8Je5Ou46Zd_vJ9QvF7nw9_wdi3VFS</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Global asymptotically stability of cellular neural networks with time-varying delay</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Guozhuang Liang ; Xueli Wu ; Wenxia Du</creator><creatorcontrib>Guozhuang Liang ; Xueli Wu ; Wenxia Du</creatorcontrib><description>A set of criteria is presented for the global asymptotically stability of delayed cellular neural networks by constructing suitable Lyapunov functionals, introducing many parameters and combining with the elementary inequality technique. Time-delay is frequently encountered in neural networks, and it is often a source of instability and oscillations in a system. It is very important to research the stability of delayed neural network, especially for global asymptotically stability of the neural network with time-varying delay. In the letter, a novel method is proposed in this note for global asymptotically stability of cellular neural networks with time-varying delay. New delay-dependent global asymptotically stability conditions of cellular neural network with time-varying delay is presented by constructing Lyapunov function and using linear matrix inequality (LMI). Finally, numerical examples are given to demonstrate the effect of the proposed method.</description><identifier>EISBN: 9781424467129</identifier><identifier>EISBN: 142446711X</identifier><identifier>EISBN: 9781424467112</identifier><identifier>EISBN: 1424467128</identifier><identifier>DOI: 10.1109/WCICA.2010.5554634</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial neural networks ; Asymptotic stability ; Cellular neural networks ; Delay ; delayed cellular neural networks (DCNNs) ; global asymptotically stability ; LMI ; Lyapunov functional ; Numerical stability ; Stability criteria</subject><ispartof>2010 8th World Congress on Intelligent Control and Automation, 2010, p.5031-5036</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5554634$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5554634$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Guozhuang Liang</creatorcontrib><creatorcontrib>Xueli Wu</creatorcontrib><creatorcontrib>Wenxia Du</creatorcontrib><title>Global asymptotically stability of cellular neural networks with time-varying delay</title><title>2010 8th World Congress on Intelligent Control and Automation</title><addtitle>WCICA</addtitle><description>A set of criteria is presented for the global asymptotically stability of delayed cellular neural networks by constructing suitable Lyapunov functionals, introducing many parameters and combining with the elementary inequality technique. Time-delay is frequently encountered in neural networks, and it is often a source of instability and oscillations in a system. It is very important to research the stability of delayed neural network, especially for global asymptotically stability of the neural network with time-varying delay. In the letter, a novel method is proposed in this note for global asymptotically stability of cellular neural networks with time-varying delay. New delay-dependent global asymptotically stability conditions of cellular neural network with time-varying delay is presented by constructing Lyapunov function and using linear matrix inequality (LMI). Finally, numerical examples are given to demonstrate the effect of the proposed method.</description><subject>Artificial neural networks</subject><subject>Asymptotic stability</subject><subject>Cellular neural networks</subject><subject>Delay</subject><subject>delayed cellular neural networks (DCNNs)</subject><subject>global asymptotically stability</subject><subject>LMI</subject><subject>Lyapunov functional</subject><subject>Numerical stability</subject><subject>Stability criteria</subject><isbn>9781424467129</isbn><isbn>142446711X</isbn><isbn>9781424467112</isbn><isbn>1424467128</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj0FLxDAUhONBUNb-Ab3kD3Tte03T9ihFV2HBg4rH5TV90WjaLk3Wpf_ewu5pmGEYvhHiFrI1QFbffzYvzcMas8UXRaF0ri5EUpcVKFRKl4D1lUhC-MmyDEqtUeO1eNv4sSUvKcz9Po7RGfJ-liFS67yLsxytNOz9wdMkBz5MS3fgeByn3yCPLn7L6HpO_2ia3fAlO_Y034hLSz5wctaV-Hh6fG-e0-3rZiHcpg7KIqa1taABOy6x6iqj6641bAwhtoS5RQbAotO6RrtkljhvlxS6qgSolKF8Je5Ou46Zd_vJ9QvF7nw9_wdi3VFS</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Guozhuang Liang</creator><creator>Xueli Wu</creator><creator>Wenxia Du</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>Global asymptotically stability of cellular neural networks with time-varying delay</title><author>Guozhuang Liang ; Xueli Wu ; Wenxia Du</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-9ff1612de728d8c69dbcecca22ba23f2e1125d6692fa22fae3b3f21d871184ca3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Artificial neural networks</topic><topic>Asymptotic stability</topic><topic>Cellular neural networks</topic><topic>Delay</topic><topic>delayed cellular neural networks (DCNNs)</topic><topic>global asymptotically stability</topic><topic>LMI</topic><topic>Lyapunov functional</topic><topic>Numerical stability</topic><topic>Stability criteria</topic><toplevel>online_resources</toplevel><creatorcontrib>Guozhuang Liang</creatorcontrib><creatorcontrib>Xueli Wu</creatorcontrib><creatorcontrib>Wenxia Du</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Guozhuang Liang</au><au>Xueli Wu</au><au>Wenxia Du</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Global asymptotically stability of cellular neural networks with time-varying delay</atitle><btitle>2010 8th World Congress on Intelligent Control and Automation</btitle><stitle>WCICA</stitle><date>2010-07</date><risdate>2010</risdate><spage>5031</spage><epage>5036</epage><pages>5031-5036</pages><eisbn>9781424467129</eisbn><eisbn>142446711X</eisbn><eisbn>9781424467112</eisbn><eisbn>1424467128</eisbn><abstract>A set of criteria is presented for the global asymptotically stability of delayed cellular neural networks by constructing suitable Lyapunov functionals, introducing many parameters and combining with the elementary inequality technique. Time-delay is frequently encountered in neural networks, and it is often a source of instability and oscillations in a system. It is very important to research the stability of delayed neural network, especially for global asymptotically stability of the neural network with time-varying delay. In the letter, a novel method is proposed in this note for global asymptotically stability of cellular neural networks with time-varying delay. New delay-dependent global asymptotically stability conditions of cellular neural network with time-varying delay is presented by constructing Lyapunov function and using linear matrix inequality (LMI). Finally, numerical examples are given to demonstrate the effect of the proposed method.</abstract><pub>IEEE</pub><doi>10.1109/WCICA.2010.5554634</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 9781424467129
ispartof 2010 8th World Congress on Intelligent Control and Automation, 2010, p.5031-5036
issn
language eng
recordid cdi_ieee_primary_5554634
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial neural networks
Asymptotic stability
Cellular neural networks
Delay
delayed cellular neural networks (DCNNs)
global asymptotically stability
LMI
Lyapunov functional
Numerical stability
Stability criteria
title Global asymptotically stability of cellular neural networks with time-varying delay
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T08%3A41%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Global%20asymptotically%20stability%20of%20cellular%20neural%20networks%20with%20time-varying%20delay&rft.btitle=2010%208th%20World%20Congress%20on%20Intelligent%20Control%20and%20Automation&rft.au=Guozhuang%20Liang&rft.date=2010-07&rft.spage=5031&rft.epage=5036&rft.pages=5031-5036&rft_id=info:doi/10.1109/WCICA.2010.5554634&rft_dat=%3Cieee_6IE%3E5554634%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424467129&rft.eisbn_list=142446711X&rft.eisbn_list=9781424467112&rft.eisbn_list=1424467128&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5554634&rfr_iscdi=true