Neural network fault prediction and its application

In this paper, the forecasting algorithm employs wavelet function to replace sigmoid function in the hidden layer of Back-Propagation Neural Network. And a Wavelet Neural Network prediction model is established to predict Anode Effect (the most typical fault) through forecasting the change rate of c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jiejia Li, Feng Qiao, Tongying Guo
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 743
container_issue
container_start_page 740
container_title
container_volume
creator Jiejia Li
Feng Qiao
Tongying Guo
description In this paper, the forecasting algorithm employs wavelet function to replace sigmoid function in the hidden layer of Back-Propagation Neural Network. And a Wavelet Neural Network prediction model is established to predict Anode Effect (the most typical fault) through forecasting the change rate of cell resistance. The authors have developed forecasting software based on platform of Visual Basic 6.0. The simulation results show that the proposed method not only has greatly improved fault prediction precision and real-time, but also improved the operation efficiency. That means we can increase energy efficiency and the safety of aluminum production process.
doi_str_mv 10.1109/WCICA.2010.5554056
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5554056</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5554056</ieee_id><sourcerecordid>5554056</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-3e9bdeac7916a69ca8c78d86ceb8af990ddeec1f4c6b674bdaa8ccc4ad75e5d73</originalsourceid><addsrcrecordid>eNotj81KxDAUheNCUMa-gG7yAh2TNL9LKf7BMG4cZjnc3txCtHZKmkF8eyvO6nAOH4dzGLuVYi2lCPf79rV9WCuxeGOMFsZesCo4L7XS2jqpwhWr5vlDCCGdtcqqa9Zs6ZRh4COV72P-5D2chsKnTDFhSceRwxh5KjOHaRoSwl92wy57GGaqzrpiu6fH9_al3rw9Lws2dZLOlLqh0EUCdEFasAHBo_PRW6TOQx-CiJEIZa_RdtbpLsJCIGqIzpCJrlmxu__eRESHKacvyD-H87XmFz2JRiU</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Neural network fault prediction and its application</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jiejia Li ; Feng Qiao ; Tongying Guo</creator><creatorcontrib>Jiejia Li ; Feng Qiao ; Tongying Guo</creatorcontrib><description>In this paper, the forecasting algorithm employs wavelet function to replace sigmoid function in the hidden layer of Back-Propagation Neural Network. And a Wavelet Neural Network prediction model is established to predict Anode Effect (the most typical fault) through forecasting the change rate of cell resistance. The authors have developed forecasting software based on platform of Visual Basic 6.0. The simulation results show that the proposed method not only has greatly improved fault prediction precision and real-time, but also improved the operation efficiency. That means we can increase energy efficiency and the safety of aluminum production process.</description><identifier>EISBN: 9781424467129</identifier><identifier>EISBN: 142446711X</identifier><identifier>EISBN: 9781424467112</identifier><identifier>EISBN: 1424467128</identifier><identifier>DOI: 10.1109/WCICA.2010.5554056</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aluminum ; Aluminum Electrolysis ; Artificial neural networks ; Energy Conservation ; Faults Prediction ; Forecasting ; Mathematical model ; Predictive models ; Resistance ; Software ; Wavelet Neural Network</subject><ispartof>2010 8th World Congress on Intelligent Control and Automation, 2010, p.740-743</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5554056$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5554056$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiejia Li</creatorcontrib><creatorcontrib>Feng Qiao</creatorcontrib><creatorcontrib>Tongying Guo</creatorcontrib><title>Neural network fault prediction and its application</title><title>2010 8th World Congress on Intelligent Control and Automation</title><addtitle>WCICA</addtitle><description>In this paper, the forecasting algorithm employs wavelet function to replace sigmoid function in the hidden layer of Back-Propagation Neural Network. And a Wavelet Neural Network prediction model is established to predict Anode Effect (the most typical fault) through forecasting the change rate of cell resistance. The authors have developed forecasting software based on platform of Visual Basic 6.0. The simulation results show that the proposed method not only has greatly improved fault prediction precision and real-time, but also improved the operation efficiency. That means we can increase energy efficiency and the safety of aluminum production process.</description><subject>Aluminum</subject><subject>Aluminum Electrolysis</subject><subject>Artificial neural networks</subject><subject>Energy Conservation</subject><subject>Faults Prediction</subject><subject>Forecasting</subject><subject>Mathematical model</subject><subject>Predictive models</subject><subject>Resistance</subject><subject>Software</subject><subject>Wavelet Neural Network</subject><isbn>9781424467129</isbn><isbn>142446711X</isbn><isbn>9781424467112</isbn><isbn>1424467128</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KxDAUheNCUMa-gG7yAh2TNL9LKf7BMG4cZjnc3txCtHZKmkF8eyvO6nAOH4dzGLuVYi2lCPf79rV9WCuxeGOMFsZesCo4L7XS2jqpwhWr5vlDCCGdtcqqa9Zs6ZRh4COV72P-5D2chsKnTDFhSceRwxh5KjOHaRoSwl92wy57GGaqzrpiu6fH9_al3rw9Lws2dZLOlLqh0EUCdEFasAHBo_PRW6TOQx-CiJEIZa_RdtbpLsJCIGqIzpCJrlmxu__eRESHKacvyD-H87XmFz2JRiU</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Jiejia Li</creator><creator>Feng Qiao</creator><creator>Tongying Guo</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>Neural network fault prediction and its application</title><author>Jiejia Li ; Feng Qiao ; Tongying Guo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-3e9bdeac7916a69ca8c78d86ceb8af990ddeec1f4c6b674bdaa8ccc4ad75e5d73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aluminum</topic><topic>Aluminum Electrolysis</topic><topic>Artificial neural networks</topic><topic>Energy Conservation</topic><topic>Faults Prediction</topic><topic>Forecasting</topic><topic>Mathematical model</topic><topic>Predictive models</topic><topic>Resistance</topic><topic>Software</topic><topic>Wavelet Neural Network</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiejia Li</creatorcontrib><creatorcontrib>Feng Qiao</creatorcontrib><creatorcontrib>Tongying Guo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiejia Li</au><au>Feng Qiao</au><au>Tongying Guo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Neural network fault prediction and its application</atitle><btitle>2010 8th World Congress on Intelligent Control and Automation</btitle><stitle>WCICA</stitle><date>2010-07</date><risdate>2010</risdate><spage>740</spage><epage>743</epage><pages>740-743</pages><eisbn>9781424467129</eisbn><eisbn>142446711X</eisbn><eisbn>9781424467112</eisbn><eisbn>1424467128</eisbn><abstract>In this paper, the forecasting algorithm employs wavelet function to replace sigmoid function in the hidden layer of Back-Propagation Neural Network. And a Wavelet Neural Network prediction model is established to predict Anode Effect (the most typical fault) through forecasting the change rate of cell resistance. The authors have developed forecasting software based on platform of Visual Basic 6.0. The simulation results show that the proposed method not only has greatly improved fault prediction precision and real-time, but also improved the operation efficiency. That means we can increase energy efficiency and the safety of aluminum production process.</abstract><pub>IEEE</pub><doi>10.1109/WCICA.2010.5554056</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 9781424467129
ispartof 2010 8th World Congress on Intelligent Control and Automation, 2010, p.740-743
issn
language eng
recordid cdi_ieee_primary_5554056
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aluminum
Aluminum Electrolysis
Artificial neural networks
Energy Conservation
Faults Prediction
Forecasting
Mathematical model
Predictive models
Resistance
Software
Wavelet Neural Network
title Neural network fault prediction and its application
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T02%3A26%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Neural%20network%20fault%20prediction%20and%20its%20application&rft.btitle=2010%208th%20World%20Congress%20on%20Intelligent%20Control%20and%20Automation&rft.au=Jiejia%20Li&rft.date=2010-07&rft.spage=740&rft.epage=743&rft.pages=740-743&rft_id=info:doi/10.1109/WCICA.2010.5554056&rft_dat=%3Cieee_6IE%3E5554056%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424467129&rft.eisbn_list=142446711X&rft.eisbn_list=9781424467112&rft.eisbn_list=1424467128&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5554056&rfr_iscdi=true