Multi-objective mean particle swarm optimization algorithm

In this paper, Pareto non-dominated ranking, crowding distance, tournament selection methods and mean particle swarm optimization were introduced, we using these concepts, a novel mean particle swarm optimization algorithm for multi-objective optimization problem is proposed. Finally, three standard...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shengyu Pei, Yongquan Zhou
Format: Tagungsbericht
Sprache:chi ; eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3319
container_issue
container_start_page 3315
container_title
container_volume
creator Shengyu Pei
Yongquan Zhou
description In this paper, Pareto non-dominated ranking, crowding distance, tournament selection methods and mean particle swarm optimization were introduced, we using these concepts, a novel mean particle swarm optimization algorithm for multi-objective optimization problem is proposed. Finally, three standard non-constrained multi-objective functions and four constrained multi-objective functions are used to test the performance of the algorithm. The experiment results show that the proposed approach is an efficient and feasible.
doi_str_mv 10.1109/WCICA.2010.5553900
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5553900</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5553900</ieee_id><sourcerecordid>5553900</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-4dcac6fa8a22f306da9cfac26af17bc972574766ecf77916a12d085bcc4d1f6e3</originalsourceid><addsrcrecordid>eNotj81KxDAURuNCUMa-gG76Ah1z0_w07qT4ByNuFJfDbXqjGZppSaOiT29hZvVxNofzMXYJfA3A7fV7-9TergVfWClVW85PWGFNA1JIqQ0Ie8aKed5xzsFoLbQ4ZzfPX0MO1djtyOXwTWUk3JcTphzcQOX8gymW45RDDH-Yw7gvcfgYU8if8YKdehxmKo67Ym_3d6_tY7V5eVhCNlUAo3Ile4dOe2xQCF9z3aN1Hp3Q6MF0zhqhjFxyyHljLGgE0fNGdc7JHrymesWuDt5ARNsphYjpd3t8WP8DhStH9w</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Multi-objective mean particle swarm optimization algorithm</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shengyu Pei ; Yongquan Zhou</creator><creatorcontrib>Shengyu Pei ; Yongquan Zhou</creatorcontrib><description>In this paper, Pareto non-dominated ranking, crowding distance, tournament selection methods and mean particle swarm optimization were introduced, we using these concepts, a novel mean particle swarm optimization algorithm for multi-objective optimization problem is proposed. Finally, three standard non-constrained multi-objective functions and four constrained multi-objective functions are used to test the performance of the algorithm. The experiment results show that the proposed approach is an efficient and feasible.</description><identifier>EISBN: 9781424467129</identifier><identifier>EISBN: 142446711X</identifier><identifier>EISBN: 9781424467112</identifier><identifier>EISBN: 1424467128</identifier><identifier>DOI: 10.1109/WCICA.2010.5553900</identifier><language>chi ; eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Biological system modeling ; Computers ; Crowding distance ; Mean particle swarm optimization ; Multi-objective constrained optimization ; Optimization ; Pareto non-dominated ; Particle swarm optimization ; Proposals</subject><ispartof>2010 8th World Congress on Intelligent Control and Automation, 2010, p.3315-3319</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5553900$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5553900$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shengyu Pei</creatorcontrib><creatorcontrib>Yongquan Zhou</creatorcontrib><title>Multi-objective mean particle swarm optimization algorithm</title><title>2010 8th World Congress on Intelligent Control and Automation</title><addtitle>WCICA</addtitle><description>In this paper, Pareto non-dominated ranking, crowding distance, tournament selection methods and mean particle swarm optimization were introduced, we using these concepts, a novel mean particle swarm optimization algorithm for multi-objective optimization problem is proposed. Finally, three standard non-constrained multi-objective functions and four constrained multi-objective functions are used to test the performance of the algorithm. The experiment results show that the proposed approach is an efficient and feasible.</description><subject>Algorithm design and analysis</subject><subject>Biological system modeling</subject><subject>Computers</subject><subject>Crowding distance</subject><subject>Mean particle swarm optimization</subject><subject>Multi-objective constrained optimization</subject><subject>Optimization</subject><subject>Pareto non-dominated</subject><subject>Particle swarm optimization</subject><subject>Proposals</subject><isbn>9781424467129</isbn><isbn>142446711X</isbn><isbn>9781424467112</isbn><isbn>1424467128</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotj81KxDAURuNCUMa-gG76Ah1z0_w07qT4ByNuFJfDbXqjGZppSaOiT29hZvVxNofzMXYJfA3A7fV7-9TergVfWClVW85PWGFNA1JIqQ0Ie8aKed5xzsFoLbQ4ZzfPX0MO1djtyOXwTWUk3JcTphzcQOX8gymW45RDDH-Yw7gvcfgYU8if8YKdehxmKo67Ym_3d6_tY7V5eVhCNlUAo3Ile4dOe2xQCF9z3aN1Hp3Q6MF0zhqhjFxyyHljLGgE0fNGdc7JHrymesWuDt5ARNsphYjpd3t8WP8DhStH9w</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Shengyu Pei</creator><creator>Yongquan Zhou</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>Multi-objective mean particle swarm optimization algorithm</title><author>Shengyu Pei ; Yongquan Zhou</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-4dcac6fa8a22f306da9cfac26af17bc972574766ecf77916a12d085bcc4d1f6e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>chi ; eng</language><creationdate>2010</creationdate><topic>Algorithm design and analysis</topic><topic>Biological system modeling</topic><topic>Computers</topic><topic>Crowding distance</topic><topic>Mean particle swarm optimization</topic><topic>Multi-objective constrained optimization</topic><topic>Optimization</topic><topic>Pareto non-dominated</topic><topic>Particle swarm optimization</topic><topic>Proposals</topic><toplevel>online_resources</toplevel><creatorcontrib>Shengyu Pei</creatorcontrib><creatorcontrib>Yongquan Zhou</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shengyu Pei</au><au>Yongquan Zhou</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Multi-objective mean particle swarm optimization algorithm</atitle><btitle>2010 8th World Congress on Intelligent Control and Automation</btitle><stitle>WCICA</stitle><date>2010-07</date><risdate>2010</risdate><spage>3315</spage><epage>3319</epage><pages>3315-3319</pages><eisbn>9781424467129</eisbn><eisbn>142446711X</eisbn><eisbn>9781424467112</eisbn><eisbn>1424467128</eisbn><abstract>In this paper, Pareto non-dominated ranking, crowding distance, tournament selection methods and mean particle swarm optimization were introduced, we using these concepts, a novel mean particle swarm optimization algorithm for multi-objective optimization problem is proposed. Finally, three standard non-constrained multi-objective functions and four constrained multi-objective functions are used to test the performance of the algorithm. The experiment results show that the proposed approach is an efficient and feasible.</abstract><pub>IEEE</pub><doi>10.1109/WCICA.2010.5553900</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISBN: 9781424467129
ispartof 2010 8th World Congress on Intelligent Control and Automation, 2010, p.3315-3319
issn
language chi ; eng
recordid cdi_ieee_primary_5553900
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Biological system modeling
Computers
Crowding distance
Mean particle swarm optimization
Multi-objective constrained optimization
Optimization
Pareto non-dominated
Particle swarm optimization
Proposals
title Multi-objective mean particle swarm optimization algorithm
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A17%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Multi-objective%20mean%20particle%20swarm%20optimization%20algorithm&rft.btitle=2010%208th%20World%20Congress%20on%20Intelligent%20Control%20and%20Automation&rft.au=Shengyu%20Pei&rft.date=2010-07&rft.spage=3315&rft.epage=3319&rft.pages=3315-3319&rft_id=info:doi/10.1109/WCICA.2010.5553900&rft_dat=%3Cieee_6IE%3E5553900%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424467129&rft.eisbn_list=142446711X&rft.eisbn_list=9781424467112&rft.eisbn_list=1424467128&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5553900&rfr_iscdi=true