Plant-wide mass balance using extended support vector regression based data reconciliation and gross error detection
In any modern petrochemical plant, the plant-wide mass data rendering the real conditions of manufacturing is the key to the operation managements such as production planning, production scheduling and performance analysis. Because of the characteristic of data reconciliation and gross error detecti...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 853 |
---|---|
container_issue | |
container_start_page | 848 |
container_title | |
container_volume | |
creator | Hongren Zhan Yu Miao Wei Wang |
description | In any modern petrochemical plant, the plant-wide mass data rendering the real conditions of manufacturing is the key to the operation managements such as production planning, production scheduling and performance analysis. Because of the characteristic of data reconciliation and gross error detection, it is quite suitable to address plant-wide mass balance problem using data reconciliation and gross error detection techniques. In this paper, an extended support vector regression approach for data reconciliation and gross error detection is proposed to achieve plant-wide mass balance, which can simultaneously detect and estimate measurement errors and missing mass movement information. The simulation results demonstrate that the proposed approach is effective and accurate. |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5553606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5553606</ieee_id><sourcerecordid>5553606</sourcerecordid><originalsourceid>FETCH-ieee_primary_55536063</originalsourceid><addsrcrecordid>eNp9j8GKwjAQhiMirLp9gr3kBYS2aWp7XhSPHrzL2IwlS03KTHT17R3Bs_9l4P_4Bv6JWuSttbZsjamnKmvXTVGVVdWYprBfKmP-yyWVLYvGzlXaDxDS6t871Bdg1ieQokN9ZR96jfeEwaHTfB3HSEnfsEuRNGFPyOxjEIGFO0ggbRdD5wcP6UUgON1TlKdIJJLDJLaQbzU7w8CYve9S_Ww3h9_dyiPicSR_AXocZYSp89p8pk-X9EqM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Plant-wide mass balance using extended support vector regression based data reconciliation and gross error detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hongren Zhan ; Yu Miao ; Wei Wang</creator><creatorcontrib>Hongren Zhan ; Yu Miao ; Wei Wang</creatorcontrib><description>In any modern petrochemical plant, the plant-wide mass data rendering the real conditions of manufacturing is the key to the operation managements such as production planning, production scheduling and performance analysis. Because of the characteristic of data reconciliation and gross error detection, it is quite suitable to address plant-wide mass balance problem using data reconciliation and gross error detection techniques. In this paper, an extended support vector regression approach for data reconciliation and gross error detection is proposed to achieve plant-wide mass balance, which can simultaneously detect and estimate measurement errors and missing mass movement information. The simulation results demonstrate that the proposed approach is effective and accurate.</description><identifier>ISBN: 9781424483815</identifier><identifier>ISBN: 1424483816</identifier><identifier>EISBN: 0955529336</identifier><identifier>EISBN: 9780955529337</identifier><language>eng</language><publisher>IEEE</publisher><subject>Frequency locked loops ; Merging ; Q measurement</subject><ispartof>Proceedings of the 2010 International Conference on Modelling, Identification and Control, 2010, p.848-853</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5553606$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5553606$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hongren Zhan</creatorcontrib><creatorcontrib>Yu Miao</creatorcontrib><creatorcontrib>Wei Wang</creatorcontrib><title>Plant-wide mass balance using extended support vector regression based data reconciliation and gross error detection</title><title>Proceedings of the 2010 International Conference on Modelling, Identification and Control</title><addtitle>ICMIC</addtitle><description>In any modern petrochemical plant, the plant-wide mass data rendering the real conditions of manufacturing is the key to the operation managements such as production planning, production scheduling and performance analysis. Because of the characteristic of data reconciliation and gross error detection, it is quite suitable to address plant-wide mass balance problem using data reconciliation and gross error detection techniques. In this paper, an extended support vector regression approach for data reconciliation and gross error detection is proposed to achieve plant-wide mass balance, which can simultaneously detect and estimate measurement errors and missing mass movement information. The simulation results demonstrate that the proposed approach is effective and accurate.</description><subject>Frequency locked loops</subject><subject>Merging</subject><subject>Q measurement</subject><isbn>9781424483815</isbn><isbn>1424483816</isbn><isbn>0955529336</isbn><isbn>9780955529337</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9j8GKwjAQhiMirLp9gr3kBYS2aWp7XhSPHrzL2IwlS03KTHT17R3Bs_9l4P_4Bv6JWuSttbZsjamnKmvXTVGVVdWYprBfKmP-yyWVLYvGzlXaDxDS6t871Bdg1ieQokN9ZR96jfeEwaHTfB3HSEnfsEuRNGFPyOxjEIGFO0ggbRdD5wcP6UUgON1TlKdIJJLDJLaQbzU7w8CYve9S_Ww3h9_dyiPicSR_AXocZYSp89p8pk-X9EqM</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Hongren Zhan</creator><creator>Yu Miao</creator><creator>Wei Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>Plant-wide mass balance using extended support vector regression based data reconciliation and gross error detection</title><author>Hongren Zhan ; Yu Miao ; Wei Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_55536063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Frequency locked loops</topic><topic>Merging</topic><topic>Q measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Hongren Zhan</creatorcontrib><creatorcontrib>Yu Miao</creatorcontrib><creatorcontrib>Wei Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hongren Zhan</au><au>Yu Miao</au><au>Wei Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Plant-wide mass balance using extended support vector regression based data reconciliation and gross error detection</atitle><btitle>Proceedings of the 2010 International Conference on Modelling, Identification and Control</btitle><stitle>ICMIC</stitle><date>2010-07</date><risdate>2010</risdate><spage>848</spage><epage>853</epage><pages>848-853</pages><isbn>9781424483815</isbn><isbn>1424483816</isbn><eisbn>0955529336</eisbn><eisbn>9780955529337</eisbn><abstract>In any modern petrochemical plant, the plant-wide mass data rendering the real conditions of manufacturing is the key to the operation managements such as production planning, production scheduling and performance analysis. Because of the characteristic of data reconciliation and gross error detection, it is quite suitable to address plant-wide mass balance problem using data reconciliation and gross error detection techniques. In this paper, an extended support vector regression approach for data reconciliation and gross error detection is proposed to achieve plant-wide mass balance, which can simultaneously detect and estimate measurement errors and missing mass movement information. The simulation results demonstrate that the proposed approach is effective and accurate.</abstract><pub>IEEE</pub></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9781424483815 |
ispartof | Proceedings of the 2010 International Conference on Modelling, Identification and Control, 2010, p.848-853 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5553606 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Frequency locked loops Merging Q measurement |
title | Plant-wide mass balance using extended support vector regression based data reconciliation and gross error detection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Plant-wide%20mass%20balance%20using%20extended%20support%20vector%20regression%20based%20data%20reconciliation%20and%20gross%20error%20detection&rft.btitle=Proceedings%20of%20the%202010%20International%20Conference%20on%20Modelling,%20Identification%20and%20Control&rft.au=Hongren%20Zhan&rft.date=2010-07&rft.spage=848&rft.epage=853&rft.pages=848-853&rft.isbn=9781424483815&rft.isbn_list=1424483816&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E5553606%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0955529336&rft.eisbn_list=9780955529337&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5553606&rfr_iscdi=true |