Plant-wide mass balance using extended support vector regression based data reconciliation and gross error detection

In any modern petrochemical plant, the plant-wide mass data rendering the real conditions of manufacturing is the key to the operation managements such as production planning, production scheduling and performance analysis. Because of the characteristic of data reconciliation and gross error detecti...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hongren Zhan, Yu Miao, Wei Wang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 853
container_issue
container_start_page 848
container_title
container_volume
creator Hongren Zhan
Yu Miao
Wei Wang
description In any modern petrochemical plant, the plant-wide mass data rendering the real conditions of manufacturing is the key to the operation managements such as production planning, production scheduling and performance analysis. Because of the characteristic of data reconciliation and gross error detection, it is quite suitable to address plant-wide mass balance problem using data reconciliation and gross error detection techniques. In this paper, an extended support vector regression approach for data reconciliation and gross error detection is proposed to achieve plant-wide mass balance, which can simultaneously detect and estimate measurement errors and missing mass movement information. The simulation results demonstrate that the proposed approach is effective and accurate.
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5553606</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5553606</ieee_id><sourcerecordid>5553606</sourcerecordid><originalsourceid>FETCH-ieee_primary_55536063</originalsourceid><addsrcrecordid>eNp9j8GKwjAQhiMirLp9gr3kBYS2aWp7XhSPHrzL2IwlS03KTHT17R3Bs_9l4P_4Bv6JWuSttbZsjamnKmvXTVGVVdWYprBfKmP-yyWVLYvGzlXaDxDS6t871Bdg1ieQokN9ZR96jfeEwaHTfB3HSEnfsEuRNGFPyOxjEIGFO0ggbRdD5wcP6UUgON1TlKdIJJLDJLaQbzU7w8CYve9S_Ww3h9_dyiPicSR_AXocZYSp89p8pk-X9EqM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Plant-wide mass balance using extended support vector regression based data reconciliation and gross error detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Hongren Zhan ; Yu Miao ; Wei Wang</creator><creatorcontrib>Hongren Zhan ; Yu Miao ; Wei Wang</creatorcontrib><description>In any modern petrochemical plant, the plant-wide mass data rendering the real conditions of manufacturing is the key to the operation managements such as production planning, production scheduling and performance analysis. Because of the characteristic of data reconciliation and gross error detection, it is quite suitable to address plant-wide mass balance problem using data reconciliation and gross error detection techniques. In this paper, an extended support vector regression approach for data reconciliation and gross error detection is proposed to achieve plant-wide mass balance, which can simultaneously detect and estimate measurement errors and missing mass movement information. The simulation results demonstrate that the proposed approach is effective and accurate.</description><identifier>ISBN: 9781424483815</identifier><identifier>ISBN: 1424483816</identifier><identifier>EISBN: 0955529336</identifier><identifier>EISBN: 9780955529337</identifier><language>eng</language><publisher>IEEE</publisher><subject>Frequency locked loops ; Merging ; Q measurement</subject><ispartof>Proceedings of the 2010 International Conference on Modelling, Identification and Control, 2010, p.848-853</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5553606$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5553606$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hongren Zhan</creatorcontrib><creatorcontrib>Yu Miao</creatorcontrib><creatorcontrib>Wei Wang</creatorcontrib><title>Plant-wide mass balance using extended support vector regression based data reconciliation and gross error detection</title><title>Proceedings of the 2010 International Conference on Modelling, Identification and Control</title><addtitle>ICMIC</addtitle><description>In any modern petrochemical plant, the plant-wide mass data rendering the real conditions of manufacturing is the key to the operation managements such as production planning, production scheduling and performance analysis. Because of the characteristic of data reconciliation and gross error detection, it is quite suitable to address plant-wide mass balance problem using data reconciliation and gross error detection techniques. In this paper, an extended support vector regression approach for data reconciliation and gross error detection is proposed to achieve plant-wide mass balance, which can simultaneously detect and estimate measurement errors and missing mass movement information. The simulation results demonstrate that the proposed approach is effective and accurate.</description><subject>Frequency locked loops</subject><subject>Merging</subject><subject>Q measurement</subject><isbn>9781424483815</isbn><isbn>1424483816</isbn><isbn>0955529336</isbn><isbn>9780955529337</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNp9j8GKwjAQhiMirLp9gr3kBYS2aWp7XhSPHrzL2IwlS03KTHT17R3Bs_9l4P_4Bv6JWuSttbZsjamnKmvXTVGVVdWYprBfKmP-yyWVLYvGzlXaDxDS6t871Bdg1ieQokN9ZR96jfeEwaHTfB3HSEnfsEuRNGFPyOxjEIGFO0ggbRdD5wcP6UUgON1TlKdIJJLDJLaQbzU7w8CYve9S_Ww3h9_dyiPicSR_AXocZYSp89p8pk-X9EqM</recordid><startdate>201007</startdate><enddate>201007</enddate><creator>Hongren Zhan</creator><creator>Yu Miao</creator><creator>Wei Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201007</creationdate><title>Plant-wide mass balance using extended support vector regression based data reconciliation and gross error detection</title><author>Hongren Zhan ; Yu Miao ; Wei Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_55536063</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Frequency locked loops</topic><topic>Merging</topic><topic>Q measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Hongren Zhan</creatorcontrib><creatorcontrib>Yu Miao</creatorcontrib><creatorcontrib>Wei Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hongren Zhan</au><au>Yu Miao</au><au>Wei Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Plant-wide mass balance using extended support vector regression based data reconciliation and gross error detection</atitle><btitle>Proceedings of the 2010 International Conference on Modelling, Identification and Control</btitle><stitle>ICMIC</stitle><date>2010-07</date><risdate>2010</risdate><spage>848</spage><epage>853</epage><pages>848-853</pages><isbn>9781424483815</isbn><isbn>1424483816</isbn><eisbn>0955529336</eisbn><eisbn>9780955529337</eisbn><abstract>In any modern petrochemical plant, the plant-wide mass data rendering the real conditions of manufacturing is the key to the operation managements such as production planning, production scheduling and performance analysis. Because of the characteristic of data reconciliation and gross error detection, it is quite suitable to address plant-wide mass balance problem using data reconciliation and gross error detection techniques. In this paper, an extended support vector regression approach for data reconciliation and gross error detection is proposed to achieve plant-wide mass balance, which can simultaneously detect and estimate measurement errors and missing mass movement information. The simulation results demonstrate that the proposed approach is effective and accurate.</abstract><pub>IEEE</pub></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424483815
ispartof Proceedings of the 2010 International Conference on Modelling, Identification and Control, 2010, p.848-853
issn
language eng
recordid cdi_ieee_primary_5553606
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Frequency locked loops
Merging
Q measurement
title Plant-wide mass balance using extended support vector regression based data reconciliation and gross error detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T12%3A38%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Plant-wide%20mass%20balance%20using%20extended%20support%20vector%20regression%20based%20data%20reconciliation%20and%20gross%20error%20detection&rft.btitle=Proceedings%20of%20the%202010%20International%20Conference%20on%20Modelling,%20Identification%20and%20Control&rft.au=Hongren%20Zhan&rft.date=2010-07&rft.spage=848&rft.epage=853&rft.pages=848-853&rft.isbn=9781424483815&rft.isbn_list=1424483816&rft_id=info:doi/&rft_dat=%3Cieee_6IE%3E5553606%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=0955529336&rft.eisbn_list=9780955529337&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5553606&rfr_iscdi=true