Elaboration of photonic crystal fibers for telecom and mid infrared wavelengths
Chalcogenide glasses are known for their large transparency in the mid infrared and their high refractive index (>2). They present also a high non linear coefficient (n 2 ), 100 to 1000 times larger than for silica, depending on the composition. An original way to obtain single-mode fibers is to...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Troles, J Adam, J L Brilland, L Coulombier, Q Chartier, T |
description | Chalcogenide glasses are known for their large transparency in the mid infrared and their high refractive index (>2). They present also a high non linear coefficient (n 2 ), 100 to 1000 times larger than for silica, depending on the composition. An original way to obtain single-mode fibers is to design microstructured optical fibers (MOFs). In addition, these fibers present unique optical properties thanks to the high degree of freedom fro the design of their geometrical structure. A classical method to realize MOFs is the stack and draw technique. In order to avoid the interfaces problems observed in chalcogenide glasses, we have developed a new casting method to fabricate the chalcogenide preform. This method permits to obtain optical losses around 1 dB/m at 1.55 μm and 0,3 dB/m in mid IR. Our group has prepared various chalcogenide microstructured fibers working in the IR range in order to associate the non linear properties of these glasses with the original MOF properties. For example, small effective mode area fibers (A eff |
doi_str_mv | 10.1109/ICTON.2010.5549180 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>hal_6IE</sourceid><recordid>TN_cdi_ieee_primary_5549180</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5549180</ieee_id><sourcerecordid>oai_HAL_hal_00496515v1</sourcerecordid><originalsourceid>FETCH-LOGICAL-h1680-35c9208911b5c35a41bac46a79f5692ab3423405213cb7532847da66a96f32e43</originalsourceid><addsrcrecordid>eNpVkE9Lw0AQxVdUsNR-Ab3s1UPq7uy_7LGUagvFXuo5TDYbs5JmyyZU-u2NWATfZXhvfgzMI-SBsznnzD5vlvvd2xzY6JWSlufsisysybkEKY2xOVz_89bekAlwDZkRwt6RWd9_slFSARiYkN2qxTImHELsaKzpsYlD7IKjLp37AVtah9KnntYx0cG33sUDxa6ih1DR0NUJk6_oF57GVfcxNP09ua2x7f3sMqfk_WW1X66z7e51s1xss4brnGVCOQsst5yXygmFkpfopEZja6UtYCkkCMkUcOFKowTk0lSoNVpdC_BSTMnT790G2-KYwgHTuYgYivViW_xk44tWK65OfGQff9ngvf-DL_WJb7C1X2c</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Elaboration of photonic crystal fibers for telecom and mid infrared wavelengths</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Troles, J ; Adam, J L ; Brilland, L ; Coulombier, Q ; Chartier, T</creator><creatorcontrib>Troles, J ; Adam, J L ; Brilland, L ; Coulombier, Q ; Chartier, T</creatorcontrib><description>Chalcogenide glasses are known for their large transparency in the mid infrared and their high refractive index (>2). They present also a high non linear coefficient (n 2 ), 100 to 1000 times larger than for silica, depending on the composition. An original way to obtain single-mode fibers is to design microstructured optical fibers (MOFs). In addition, these fibers present unique optical properties thanks to the high degree of freedom fro the design of their geometrical structure. A classical method to realize MOFs is the stack and draw technique. In order to avoid the interfaces problems observed in chalcogenide glasses, we have developed a new casting method to fabricate the chalcogenide preform. This method permits to obtain optical losses around 1 dB/m at 1.55 μm and 0,3 dB/m in mid IR. Our group has prepared various chalcogenide microstructured fibers working in the IR range in order to associate the non linear properties of these glasses with the original MOF properties. For example, small effective mode area fibers (A eff <; 10 μm 2 ) have been realized to exacerbate the non linear optical properties for telecom applications such as signal regeneration, and for supercontinuum sources. On the contrary, and military applications in the 3 - 5 μm and the 8 - 12 μm windows, large effective mode area and single mode fibers have also been designed to permit the propagation of high power Gaussian laser beams.</description><identifier>ISSN: 2162-7339</identifier><identifier>ISBN: 9781424477999</identifier><identifier>ISBN: 1424477999</identifier><identifier>EISBN: 9781424477982</identifier><identifier>EISBN: 1424477980</identifier><identifier>EISBN: 9781424477975</identifier><identifier>EISBN: 1424477972</identifier><identifier>DOI: 10.1109/ICTON.2010.5549180</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chalcogenide glasses ; Engineering Sciences ; Fiber nonlinear optics ; Geometrical optics ; Glass ; microstructured fibers ; non-linear properties ; Optical design ; Optical fibers ; Optical refraction ; Optical variables control ; Optics ; Photonic ; Photonic crystal fibers ; Refractive index ; Telecommunications</subject><ispartof>2010 12th International Conference on Transparent Optical Networks, 2010, p.1-4</ispartof><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-1242-6776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5549180$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,886,2059,27930,54925</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5549180$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://hal.science/hal-00496515$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Troles, J</creatorcontrib><creatorcontrib>Adam, J L</creatorcontrib><creatorcontrib>Brilland, L</creatorcontrib><creatorcontrib>Coulombier, Q</creatorcontrib><creatorcontrib>Chartier, T</creatorcontrib><title>Elaboration of photonic crystal fibers for telecom and mid infrared wavelengths</title><title>2010 12th International Conference on Transparent Optical Networks</title><addtitle>ICTON</addtitle><description>Chalcogenide glasses are known for their large transparency in the mid infrared and their high refractive index (>2). They present also a high non linear coefficient (n 2 ), 100 to 1000 times larger than for silica, depending on the composition. An original way to obtain single-mode fibers is to design microstructured optical fibers (MOFs). In addition, these fibers present unique optical properties thanks to the high degree of freedom fro the design of their geometrical structure. A classical method to realize MOFs is the stack and draw technique. In order to avoid the interfaces problems observed in chalcogenide glasses, we have developed a new casting method to fabricate the chalcogenide preform. This method permits to obtain optical losses around 1 dB/m at 1.55 μm and 0,3 dB/m in mid IR. Our group has prepared various chalcogenide microstructured fibers working in the IR range in order to associate the non linear properties of these glasses with the original MOF properties. For example, small effective mode area fibers (A eff <; 10 μm 2 ) have been realized to exacerbate the non linear optical properties for telecom applications such as signal regeneration, and for supercontinuum sources. On the contrary, and military applications in the 3 - 5 μm and the 8 - 12 μm windows, large effective mode area and single mode fibers have also been designed to permit the propagation of high power Gaussian laser beams.</description><subject>Chalcogenide glasses</subject><subject>Engineering Sciences</subject><subject>Fiber nonlinear optics</subject><subject>Geometrical optics</subject><subject>Glass</subject><subject>microstructured fibers</subject><subject>non-linear properties</subject><subject>Optical design</subject><subject>Optical fibers</subject><subject>Optical refraction</subject><subject>Optical variables control</subject><subject>Optics</subject><subject>Photonic</subject><subject>Photonic crystal fibers</subject><subject>Refractive index</subject><subject>Telecommunications</subject><issn>2162-7339</issn><isbn>9781424477999</isbn><isbn>1424477999</isbn><isbn>9781424477982</isbn><isbn>1424477980</isbn><isbn>9781424477975</isbn><isbn>1424477972</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkE9Lw0AQxVdUsNR-Ab3s1UPq7uy_7LGUagvFXuo5TDYbs5JmyyZU-u2NWATfZXhvfgzMI-SBsznnzD5vlvvd2xzY6JWSlufsisysybkEKY2xOVz_89bekAlwDZkRwt6RWd9_slFSARiYkN2qxTImHELsaKzpsYlD7IKjLp37AVtah9KnntYx0cG33sUDxa6ih1DR0NUJk6_oF57GVfcxNP09ua2x7f3sMqfk_WW1X66z7e51s1xss4brnGVCOQsst5yXygmFkpfopEZja6UtYCkkCMkUcOFKowTk0lSoNVpdC_BSTMnT790G2-KYwgHTuYgYivViW_xk44tWK65OfGQff9ngvf-DL_WJb7C1X2c</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Troles, J</creator><creator>Adam, J L</creator><creator>Brilland, L</creator><creator>Coulombier, Q</creator><creator>Chartier, T</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><scope>1XC</scope><orcidid>https://orcid.org/0000-0002-1242-6776</orcidid></search><sort><creationdate>201006</creationdate><title>Elaboration of photonic crystal fibers for telecom and mid infrared wavelengths</title><author>Troles, J ; Adam, J L ; Brilland, L ; Coulombier, Q ; Chartier, T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-h1680-35c9208911b5c35a41bac46a79f5692ab3423405213cb7532847da66a96f32e43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chalcogenide glasses</topic><topic>Engineering Sciences</topic><topic>Fiber nonlinear optics</topic><topic>Geometrical optics</topic><topic>Glass</topic><topic>microstructured fibers</topic><topic>non-linear properties</topic><topic>Optical design</topic><topic>Optical fibers</topic><topic>Optical refraction</topic><topic>Optical variables control</topic><topic>Optics</topic><topic>Photonic</topic><topic>Photonic crystal fibers</topic><topic>Refractive index</topic><topic>Telecommunications</topic><toplevel>online_resources</toplevel><creatorcontrib>Troles, J</creatorcontrib><creatorcontrib>Adam, J L</creatorcontrib><creatorcontrib>Brilland, L</creatorcontrib><creatorcontrib>Coulombier, Q</creatorcontrib><creatorcontrib>Chartier, T</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection><collection>Hyper Article en Ligne (HAL)</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Troles, J</au><au>Adam, J L</au><au>Brilland, L</au><au>Coulombier, Q</au><au>Chartier, T</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Elaboration of photonic crystal fibers for telecom and mid infrared wavelengths</atitle><btitle>2010 12th International Conference on Transparent Optical Networks</btitle><stitle>ICTON</stitle><date>2010-06</date><risdate>2010</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2162-7339</issn><isbn>9781424477999</isbn><isbn>1424477999</isbn><eisbn>9781424477982</eisbn><eisbn>1424477980</eisbn><eisbn>9781424477975</eisbn><eisbn>1424477972</eisbn><abstract>Chalcogenide glasses are known for their large transparency in the mid infrared and their high refractive index (>2). They present also a high non linear coefficient (n 2 ), 100 to 1000 times larger than for silica, depending on the composition. An original way to obtain single-mode fibers is to design microstructured optical fibers (MOFs). In addition, these fibers present unique optical properties thanks to the high degree of freedom fro the design of their geometrical structure. A classical method to realize MOFs is the stack and draw technique. In order to avoid the interfaces problems observed in chalcogenide glasses, we have developed a new casting method to fabricate the chalcogenide preform. This method permits to obtain optical losses around 1 dB/m at 1.55 μm and 0,3 dB/m in mid IR. Our group has prepared various chalcogenide microstructured fibers working in the IR range in order to associate the non linear properties of these glasses with the original MOF properties. For example, small effective mode area fibers (A eff <; 10 μm 2 ) have been realized to exacerbate the non linear optical properties for telecom applications such as signal regeneration, and for supercontinuum sources. On the contrary, and military applications in the 3 - 5 μm and the 8 - 12 μm windows, large effective mode area and single mode fibers have also been designed to permit the propagation of high power Gaussian laser beams.</abstract><pub>IEEE</pub><doi>10.1109/ICTON.2010.5549180</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0002-1242-6776</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2162-7339 |
ispartof | 2010 12th International Conference on Transparent Optical Networks, 2010, p.1-4 |
issn | 2162-7339 |
language | eng |
recordid | cdi_ieee_primary_5549180 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Chalcogenide glasses Engineering Sciences Fiber nonlinear optics Geometrical optics Glass microstructured fibers non-linear properties Optical design Optical fibers Optical refraction Optical variables control Optics Photonic Photonic crystal fibers Refractive index Telecommunications |
title | Elaboration of photonic crystal fibers for telecom and mid infrared wavelengths |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-12T03%3A38%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-hal_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Elaboration%20of%20photonic%20crystal%20fibers%20for%20telecom%20and%20mid%20infrared%20wavelengths&rft.btitle=2010%2012th%20International%20Conference%20on%20Transparent%20Optical%20Networks&rft.au=Troles,%20J&rft.date=2010-06&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2162-7339&rft.isbn=9781424477999&rft.isbn_list=1424477999&rft_id=info:doi/10.1109/ICTON.2010.5549180&rft_dat=%3Chal_6IE%3Eoai_HAL_hal_00496515v1%3C/hal_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424477982&rft.eisbn_list=1424477980&rft.eisbn_list=9781424477975&rft.eisbn_list=1424477972&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5549180&rfr_iscdi=true |