Millimeter wave measurement of high loss liquids permittivity

Numerous techniques are applied to the complex permittivity (CP) measurement of liquids at microwave frequencies. It is well known that both resonator and waveguide methods used for the CP measurement of high loss liquids. The resonator methods apply the complex resonant frequency to obtain CP of li...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zoya, E, Valery, S, Alexander, S, Vladimir, G
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3
container_issue
container_start_page 1
container_title
container_volume
creator Zoya, E
Valery, S
Alexander, S
Vladimir, G
description Numerous techniques are applied to the complex permittivity (CP) measurement of liquids at microwave frequencies. It is well known that both resonator and waveguide methods used for the CP measurement of high loss liquids. The resonator methods apply the complex resonant frequency to obtain CP of liquid. And the waveguide methods use the complex propagation factor in the waveguide segment with liquid that under study. The significant limitation of the above-mentioned methods is a high attenuation observed in the high loss liquid measurements. Moreover, the high loss liquid has large real and imaginary CP parts (far more greater than 1, specifically, for water) and these values are of the same magnitude. Therefore, measured parameters (the resonant frequency and Q-factor in the resonator or the wave phase and attenuation in the waveguide) are simultaneously dependent both on real and imaginary CP parts. Owing to this fact the CP determination becomes considerably complicated while using measured parameters. For the resonator method the Q-factor is rather small (it is on the order of 10-100) and as a result it is difficult to determine the resonant frequency value. As to the waveguide method, the wave attenuation is high during the propagation of the wave even via a small waveguide section in the presence of high loss liquid.
doi_str_mv 10.1109/MSMW.2010.5546077
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5546077</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5546077</ieee_id><sourcerecordid>5546077</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-c1f6e63952f0ad6a7549bcbed7789332c403bc143624366e19fe65a174944d933</originalsourceid><addsrcrecordid>eNo1T9tKAzEUjIigtv0A8SU_sDWXk6R58EGKN-jiQws-luzuWXtk19YkrfTvXbAODMPAMMwwdiPFVErh78pl-T5VYrDGgBXOnbFrCQrAzfzMnf8bL4S6ZJOUPsUAMEpqf8XuS-o66jFj5D_hgLzHkPYRe_zKfNvyDX1seLdNiXf0vacm8R3GnnKmA-XjmF20oUs4OemIrZ4eV_OXYvH2_Dp_WBTkRS5q2Vq02hvVitDY4Az4qq6wccNCrVUNQle1BG3VQIvSt2hNkA48QDMkRuz2r5YQcb2L1Id4XJ_e6l9CHkiQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Millimeter wave measurement of high loss liquids permittivity</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zoya, E ; Valery, S ; Alexander, S ; Vladimir, G</creator><creatorcontrib>Zoya, E ; Valery, S ; Alexander, S ; Vladimir, G</creatorcontrib><description>Numerous techniques are applied to the complex permittivity (CP) measurement of liquids at microwave frequencies. It is well known that both resonator and waveguide methods used for the CP measurement of high loss liquids. The resonator methods apply the complex resonant frequency to obtain CP of liquid. And the waveguide methods use the complex propagation factor in the waveguide segment with liquid that under study. The significant limitation of the above-mentioned methods is a high attenuation observed in the high loss liquid measurements. Moreover, the high loss liquid has large real and imaginary CP parts (far more greater than 1, specifically, for water) and these values are of the same magnitude. Therefore, measured parameters (the resonant frequency and Q-factor in the resonator or the wave phase and attenuation in the waveguide) are simultaneously dependent both on real and imaginary CP parts. Owing to this fact the CP determination becomes considerably complicated while using measured parameters. For the resonator method the Q-factor is rather small (it is on the order of 10-100) and as a result it is difficult to determine the resonant frequency value. As to the waveguide method, the wave attenuation is high during the propagation of the wave even via a small waveguide section in the presence of high loss liquid.</description><identifier>ISBN: 1424479002</identifier><identifier>ISBN: 9781424479009</identifier><identifier>EISBN: 1424478987</identifier><identifier>EISBN: 9781424478989</identifier><identifier>EISBN: 1424478995</identifier><identifier>EISBN: 9781424478996</identifier><identifier>DOI: 10.1109/MSMW.2010.5546077</identifier><language>eng</language><publisher>IEEE</publisher><subject>Absorption ; Dielectric loss measurement ; Electromagnetic waveguides ; Liquids ; Loss measurement ; Magnetic liquids ; Propagation losses</subject><ispartof>2010 INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES, 2010, p.1-3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5546077$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,2053,27907,54902</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5546077$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zoya, E</creatorcontrib><creatorcontrib>Valery, S</creatorcontrib><creatorcontrib>Alexander, S</creatorcontrib><creatorcontrib>Vladimir, G</creatorcontrib><title>Millimeter wave measurement of high loss liquids permittivity</title><title>2010 INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES</title><addtitle>MSMW</addtitle><description>Numerous techniques are applied to the complex permittivity (CP) measurement of liquids at microwave frequencies. It is well known that both resonator and waveguide methods used for the CP measurement of high loss liquids. The resonator methods apply the complex resonant frequency to obtain CP of liquid. And the waveguide methods use the complex propagation factor in the waveguide segment with liquid that under study. The significant limitation of the above-mentioned methods is a high attenuation observed in the high loss liquid measurements. Moreover, the high loss liquid has large real and imaginary CP parts (far more greater than 1, specifically, for water) and these values are of the same magnitude. Therefore, measured parameters (the resonant frequency and Q-factor in the resonator or the wave phase and attenuation in the waveguide) are simultaneously dependent both on real and imaginary CP parts. Owing to this fact the CP determination becomes considerably complicated while using measured parameters. For the resonator method the Q-factor is rather small (it is on the order of 10-100) and as a result it is difficult to determine the resonant frequency value. As to the waveguide method, the wave attenuation is high during the propagation of the wave even via a small waveguide section in the presence of high loss liquid.</description><subject>Absorption</subject><subject>Dielectric loss measurement</subject><subject>Electromagnetic waveguides</subject><subject>Liquids</subject><subject>Loss measurement</subject><subject>Magnetic liquids</subject><subject>Propagation losses</subject><isbn>1424479002</isbn><isbn>9781424479009</isbn><isbn>1424478987</isbn><isbn>9781424478989</isbn><isbn>1424478995</isbn><isbn>9781424478996</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1T9tKAzEUjIigtv0A8SU_sDWXk6R58EGKN-jiQws-luzuWXtk19YkrfTvXbAODMPAMMwwdiPFVErh78pl-T5VYrDGgBXOnbFrCQrAzfzMnf8bL4S6ZJOUPsUAMEpqf8XuS-o66jFj5D_hgLzHkPYRe_zKfNvyDX1seLdNiXf0vacm8R3GnnKmA-XjmF20oUs4OemIrZ4eV_OXYvH2_Dp_WBTkRS5q2Vq02hvVitDY4Az4qq6wccNCrVUNQle1BG3VQIvSt2hNkA48QDMkRuz2r5YQcb2L1Id4XJ_e6l9CHkiQ</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Zoya, E</creator><creator>Valery, S</creator><creator>Alexander, S</creator><creator>Vladimir, G</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201006</creationdate><title>Millimeter wave measurement of high loss liquids permittivity</title><author>Zoya, E ; Valery, S ; Alexander, S ; Vladimir, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-c1f6e63952f0ad6a7549bcbed7789332c403bc143624366e19fe65a174944d933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Absorption</topic><topic>Dielectric loss measurement</topic><topic>Electromagnetic waveguides</topic><topic>Liquids</topic><topic>Loss measurement</topic><topic>Magnetic liquids</topic><topic>Propagation losses</topic><toplevel>online_resources</toplevel><creatorcontrib>Zoya, E</creatorcontrib><creatorcontrib>Valery, S</creatorcontrib><creatorcontrib>Alexander, S</creatorcontrib><creatorcontrib>Vladimir, G</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zoya, E</au><au>Valery, S</au><au>Alexander, S</au><au>Vladimir, G</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Millimeter wave measurement of high loss liquids permittivity</atitle><btitle>2010 INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES</btitle><stitle>MSMW</stitle><date>2010-06</date><risdate>2010</risdate><spage>1</spage><epage>3</epage><pages>1-3</pages><isbn>1424479002</isbn><isbn>9781424479009</isbn><eisbn>1424478987</eisbn><eisbn>9781424478989</eisbn><eisbn>1424478995</eisbn><eisbn>9781424478996</eisbn><abstract>Numerous techniques are applied to the complex permittivity (CP) measurement of liquids at microwave frequencies. It is well known that both resonator and waveguide methods used for the CP measurement of high loss liquids. The resonator methods apply the complex resonant frequency to obtain CP of liquid. And the waveguide methods use the complex propagation factor in the waveguide segment with liquid that under study. The significant limitation of the above-mentioned methods is a high attenuation observed in the high loss liquid measurements. Moreover, the high loss liquid has large real and imaginary CP parts (far more greater than 1, specifically, for water) and these values are of the same magnitude. Therefore, measured parameters (the resonant frequency and Q-factor in the resonator or the wave phase and attenuation in the waveguide) are simultaneously dependent both on real and imaginary CP parts. Owing to this fact the CP determination becomes considerably complicated while using measured parameters. For the resonator method the Q-factor is rather small (it is on the order of 10-100) and as a result it is difficult to determine the resonant frequency value. As to the waveguide method, the wave attenuation is high during the propagation of the wave even via a small waveguide section in the presence of high loss liquid.</abstract><pub>IEEE</pub><doi>10.1109/MSMW.2010.5546077</doi><tpages>3</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424479002
ispartof 2010 INTERNATIONAL KHARKOV SYMPOSIUM ON PHYSICS AND ENGINEERING OF MICROWAVES, MILLIMETER AND SUBMILLIMETER WAVES, 2010, p.1-3
issn
language eng
recordid cdi_ieee_primary_5546077
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Absorption
Dielectric loss measurement
Electromagnetic waveguides
Liquids
Loss measurement
Magnetic liquids
Propagation losses
title Millimeter wave measurement of high loss liquids permittivity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A00%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Millimeter%20wave%20measurement%20of%20high%20loss%20liquids%20permittivity&rft.btitle=2010%20INTERNATIONAL%20KHARKOV%20SYMPOSIUM%20ON%20PHYSICS%20AND%20ENGINEERING%20OF%20MICROWAVES,%20MILLIMETER%20AND%20SUBMILLIMETER%20WAVES&rft.au=Zoya,%20E&rft.date=2010-06&rft.spage=1&rft.epage=3&rft.pages=1-3&rft.isbn=1424479002&rft.isbn_list=9781424479009&rft_id=info:doi/10.1109/MSMW.2010.5546077&rft_dat=%3Cieee_6IE%3E5546077%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424478987&rft.eisbn_list=9781424478989&rft.eisbn_list=1424478995&rft.eisbn_list=9781424478996&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5546077&rfr_iscdi=true