Distributed fusion architectures and algorithms for target tracking

Modern surveillance systems often utilize multiple physically distributed sensors of different types to provide complementary and overlapping coverage on targets. In order to generate target tracks and estimates, the sensor data need to be fused. While a centralized processing approach is theoretica...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the IEEE 1997-01, Vol.85 (1), p.95-107
Hauptverfasser: Liggins, M.E., Chee-Yee Chong, Kadar, I., Alford, M.G., Vannicola, V., Thomopoulos, S.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 107
container_issue 1
container_start_page 95
container_title Proceedings of the IEEE
container_volume 85
creator Liggins, M.E.
Chee-Yee Chong
Kadar, I.
Alford, M.G.
Vannicola, V.
Thomopoulos, S.
description Modern surveillance systems often utilize multiple physically distributed sensors of different types to provide complementary and overlapping coverage on targets. In order to generate target tracks and estimates, the sensor data need to be fused. While a centralized processing approach is theoretically optimal, there are significant advantages in distributing the fusion operations over multiple processing nodes. This paper discusses architectures for distributed fusion, whereby each node processes the data from its own set of sensors and communicates with other nodes to improve on the estimates, The information graph is introduced as a way of modeling information flow in distributed fusion systems and for developing algorithms. Fusion for target tracking involves two main operations: estimation and association. Distributed estimation algorithms based on the information graph are presented for arbitrary fusion architectures and related to linear and nonlinear distributed estimation results. The distributed data association problem is discussed in terms of track-to-track association likelihoods. Distributed versions of two popular tracking approaches (joint probabilistic data association and multiple hypothesis tracking) are then presented, and examples of applications are given.
doi_str_mv 10.1109/JPROC.1997.554211
format Article
fullrecord <record><control><sourceid>crossref_RIE</sourceid><recordid>TN_cdi_ieee_primary_554211</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>554211</ieee_id><sourcerecordid>10_1109_JPROC_1997_554211</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-f36beeaed82b6670dda3df435ddd5c0cbe3e8929311896facb2a3b60f8cf9ffb3</originalsourceid><addsrcrecordid>eNo9j8tOwzAURL0AiVL4AFj5BxJ848aJlyg8CqpUhGBt-XGdGtoG2c6Cv4eSitUsZs5Ih5ArYCUAkzfPL6_rrgQpm7KuFxXACZkxBm0hK5Bn5DylD8YYrwWfke4upByDGTM66scUhj3V0W5CRpvHiInqvaN62w8x5M0uUT9EmnXsMdMctf0M-_6CnHq9TXh5zDl5f7h_65bFav341N2uCssbyIXnwiBqdG1lhGiYc5o7v-C1c662zBrk2MpKcoBWCq-tqTQ3gvnWeum94XMC06-NQ0oRvfqKYafjtwKmDubqz1wdzNVk_stcT0xAxP_9sfwBqd1ZrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Distributed fusion architectures and algorithms for target tracking</title><source>IEEE Electronic Library (IEL)</source><creator>Liggins, M.E. ; Chee-Yee Chong ; Kadar, I. ; Alford, M.G. ; Vannicola, V. ; Thomopoulos, S.</creator><creatorcontrib>Liggins, M.E. ; Chee-Yee Chong ; Kadar, I. ; Alford, M.G. ; Vannicola, V. ; Thomopoulos, S.</creatorcontrib><description>Modern surveillance systems often utilize multiple physically distributed sensors of different types to provide complementary and overlapping coverage on targets. In order to generate target tracks and estimates, the sensor data need to be fused. While a centralized processing approach is theoretically optimal, there are significant advantages in distributing the fusion operations over multiple processing nodes. This paper discusses architectures for distributed fusion, whereby each node processes the data from its own set of sensors and communicates with other nodes to improve on the estimates, The information graph is introduced as a way of modeling information flow in distributed fusion systems and for developing algorithms. Fusion for target tracking involves two main operations: estimation and association. Distributed estimation algorithms based on the information graph are presented for arbitrary fusion architectures and related to linear and nonlinear distributed estimation results. The distributed data association problem is discussed in terms of track-to-track association likelihoods. Distributed versions of two popular tracking approaches (joint probabilistic data association and multiple hypothesis tracking) are then presented, and examples of applications are given.</description><identifier>ISSN: 0018-9219</identifier><identifier>DOI: 10.1109/JPROC.1997.554211</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer architecture ; Distributed databases ; Fusion power generation ; Laboratories ; Radar detection ; Radar tracking ; Sensor fusion ; Sensor systems ; Surveillance ; Target tracking</subject><ispartof>Proceedings of the IEEE, 1997-01, Vol.85 (1), p.95-107</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-f36beeaed82b6670dda3df435ddd5c0cbe3e8929311896facb2a3b60f8cf9ffb3</citedby><cites>FETCH-LOGICAL-c371t-f36beeaed82b6670dda3df435ddd5c0cbe3e8929311896facb2a3b60f8cf9ffb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/554211$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/554211$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Liggins, M.E.</creatorcontrib><creatorcontrib>Chee-Yee Chong</creatorcontrib><creatorcontrib>Kadar, I.</creatorcontrib><creatorcontrib>Alford, M.G.</creatorcontrib><creatorcontrib>Vannicola, V.</creatorcontrib><creatorcontrib>Thomopoulos, S.</creatorcontrib><title>Distributed fusion architectures and algorithms for target tracking</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>Modern surveillance systems often utilize multiple physically distributed sensors of different types to provide complementary and overlapping coverage on targets. In order to generate target tracks and estimates, the sensor data need to be fused. While a centralized processing approach is theoretically optimal, there are significant advantages in distributing the fusion operations over multiple processing nodes. This paper discusses architectures for distributed fusion, whereby each node processes the data from its own set of sensors and communicates with other nodes to improve on the estimates, The information graph is introduced as a way of modeling information flow in distributed fusion systems and for developing algorithms. Fusion for target tracking involves two main operations: estimation and association. Distributed estimation algorithms based on the information graph are presented for arbitrary fusion architectures and related to linear and nonlinear distributed estimation results. The distributed data association problem is discussed in terms of track-to-track association likelihoods. Distributed versions of two popular tracking approaches (joint probabilistic data association and multiple hypothesis tracking) are then presented, and examples of applications are given.</description><subject>Computer architecture</subject><subject>Distributed databases</subject><subject>Fusion power generation</subject><subject>Laboratories</subject><subject>Radar detection</subject><subject>Radar tracking</subject><subject>Sensor fusion</subject><subject>Sensor systems</subject><subject>Surveillance</subject><subject>Target tracking</subject><issn>0018-9219</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1997</creationdate><recordtype>article</recordtype><recordid>eNo9j8tOwzAURL0AiVL4AFj5BxJ848aJlyg8CqpUhGBt-XGdGtoG2c6Cv4eSitUsZs5Ih5ArYCUAkzfPL6_rrgQpm7KuFxXACZkxBm0hK5Bn5DylD8YYrwWfke4upByDGTM66scUhj3V0W5CRpvHiInqvaN62w8x5M0uUT9EmnXsMdMctf0M-_6CnHq9TXh5zDl5f7h_65bFav341N2uCssbyIXnwiBqdG1lhGiYc5o7v-C1c662zBrk2MpKcoBWCq-tqTQ3gvnWeum94XMC06-NQ0oRvfqKYafjtwKmDubqz1wdzNVk_stcT0xAxP_9sfwBqd1ZrQ</recordid><startdate>199701</startdate><enddate>199701</enddate><creator>Liggins, M.E.</creator><creator>Chee-Yee Chong</creator><creator>Kadar, I.</creator><creator>Alford, M.G.</creator><creator>Vannicola, V.</creator><creator>Thomopoulos, S.</creator><general>IEEE</general><scope>AAYXX</scope><scope>CITATION</scope></search><sort><creationdate>199701</creationdate><title>Distributed fusion architectures and algorithms for target tracking</title><author>Liggins, M.E. ; Chee-Yee Chong ; Kadar, I. ; Alford, M.G. ; Vannicola, V. ; Thomopoulos, S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-f36beeaed82b6670dda3df435ddd5c0cbe3e8929311896facb2a3b60f8cf9ffb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1997</creationdate><topic>Computer architecture</topic><topic>Distributed databases</topic><topic>Fusion power generation</topic><topic>Laboratories</topic><topic>Radar detection</topic><topic>Radar tracking</topic><topic>Sensor fusion</topic><topic>Sensor systems</topic><topic>Surveillance</topic><topic>Target tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liggins, M.E.</creatorcontrib><creatorcontrib>Chee-Yee Chong</creatorcontrib><creatorcontrib>Kadar, I.</creatorcontrib><creatorcontrib>Alford, M.G.</creatorcontrib><creatorcontrib>Vannicola, V.</creatorcontrib><creatorcontrib>Thomopoulos, S.</creatorcontrib><collection>CrossRef</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Liggins, M.E.</au><au>Chee-Yee Chong</au><au>Kadar, I.</au><au>Alford, M.G.</au><au>Vannicola, V.</au><au>Thomopoulos, S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distributed fusion architectures and algorithms for target tracking</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>1997-01</date><risdate>1997</risdate><volume>85</volume><issue>1</issue><spage>95</spage><epage>107</epage><pages>95-107</pages><issn>0018-9219</issn><coden>IEEPAD</coden><abstract>Modern surveillance systems often utilize multiple physically distributed sensors of different types to provide complementary and overlapping coverage on targets. In order to generate target tracks and estimates, the sensor data need to be fused. While a centralized processing approach is theoretically optimal, there are significant advantages in distributing the fusion operations over multiple processing nodes. This paper discusses architectures for distributed fusion, whereby each node processes the data from its own set of sensors and communicates with other nodes to improve on the estimates, The information graph is introduced as a way of modeling information flow in distributed fusion systems and for developing algorithms. Fusion for target tracking involves two main operations: estimation and association. Distributed estimation algorithms based on the information graph are presented for arbitrary fusion architectures and related to linear and nonlinear distributed estimation results. The distributed data association problem is discussed in terms of track-to-track association likelihoods. Distributed versions of two popular tracking approaches (joint probabilistic data association and multiple hypothesis tracking) are then presented, and examples of applications are given.</abstract><pub>IEEE</pub><doi>10.1109/JPROC.1997.554211</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 1997-01, Vol.85 (1), p.95-107
issn 0018-9219
language eng
recordid cdi_ieee_primary_554211
source IEEE Electronic Library (IEL)
subjects Computer architecture
Distributed databases
Fusion power generation
Laboratories
Radar detection
Radar tracking
Sensor fusion
Sensor systems
Surveillance
Target tracking
title Distributed fusion architectures and algorithms for target tracking
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T07%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-crossref_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distributed%20fusion%20architectures%20and%20algorithms%20for%20target%20tracking&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Liggins,%20M.E.&rft.date=1997-01&rft.volume=85&rft.issue=1&rft.spage=95&rft.epage=107&rft.pages=95-107&rft.issn=0018-9219&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.1997.554211&rft_dat=%3Ccrossref_RIE%3E10_1109_JPROC_1997_554211%3C/crossref_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=554211&rfr_iscdi=true