Real time motion capture using a single time-of-flight camera

Markerless tracking of human pose is a hard yet relevant problem. In this paper, we derive an efficient filtering algorithm for tracking human pose using a stream of monocular depth images. The key idea is to combine an accurate generative model - which is achievable in this setting using programmab...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ganapathi, Varun, Plagemann, Christian, Koller, Daphne, Thrun, Sebastian
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 762
container_issue
container_start_page 755
container_title
container_volume
creator Ganapathi, Varun
Plagemann, Christian
Koller, Daphne
Thrun, Sebastian
description Markerless tracking of human pose is a hard yet relevant problem. In this paper, we derive an efficient filtering algorithm for tracking human pose using a stream of monocular depth images. The key idea is to combine an accurate generative model - which is achievable in this setting using programmable graphics hardware - with a discriminative model that provides data-driven evidence about body part locations. In each filter iteration, we apply a form of local model-based search that exploits the nature of the kinematic chain. As fast movements and occlusion can disrupt the local search, we utilize a set of discriminatively trained patch classifiers to detect body parts. We describe a novel algorithm for propagating this noisy evidence about body part locations up the kinematic chain using the unscented transform. The resulting distribution of body configurations allows us to reinitialize the model-based search. We provide extensive experimental results on 28 real-world sequences using automatic ground-truth annotations from a commercial motion capture system.
doi_str_mv 10.1109/CVPR.2010.5540141
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5540141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5540141</ieee_id><sourcerecordid>5540141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-5ad941f24d07212980c0ae837dff7e6ba5a9effc680920a2910bc6b1324f63403</originalsourceid><addsrcrecordid>eNpFj8FKAzEURSMq2FY_QNzkB1LfSzKZZOFCilWhoBQVd-XNzEuNzHTKzHTh31u14Opw4HDhCnGJMEWEcD17e15ONew1yyygxSMxRqutdcGb9-N_sf5EjBCcUS5gOBPjvv8E0CbXMBI3S6ZaDqlh2bRDajeypO2w61ju-rRZS5I_qPk3UW1UsU7rj2FfNdzRuTiNVPd8ceBEvM7vXmYPavF0_zi7XahS-zCojKpgMWpbQa5RBw8lEHuTVzHm7ArKKHCMpfMQNJAOCEXpCjTaRmcsmIm4-ttNzLzadqmh7mt1-G2-AVV6SVI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Real time motion capture using a single time-of-flight camera</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ganapathi, Varun ; Plagemann, Christian ; Koller, Daphne ; Thrun, Sebastian</creator><creatorcontrib>Ganapathi, Varun ; Plagemann, Christian ; Koller, Daphne ; Thrun, Sebastian</creatorcontrib><description>Markerless tracking of human pose is a hard yet relevant problem. In this paper, we derive an efficient filtering algorithm for tracking human pose using a stream of monocular depth images. The key idea is to combine an accurate generative model - which is achievable in this setting using programmable graphics hardware - with a discriminative model that provides data-driven evidence about body part locations. In each filter iteration, we apply a form of local model-based search that exploits the nature of the kinematic chain. As fast movements and occlusion can disrupt the local search, we utilize a set of discriminatively trained patch classifiers to detect body parts. We describe a novel algorithm for propagating this noisy evidence about body part locations up the kinematic chain using the unscented transform. The resulting distribution of body configurations allows us to reinitialize the model-based search. We provide extensive experimental results on 28 real-world sequences using automatic ground-truth annotations from a commercial motion capture system.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 1424469848</identifier><identifier>ISBN: 9781424469840</identifier><identifier>EISBN: 142446983X</identifier><identifier>EISBN: 9781424469833</identifier><identifier>EISBN: 9781424469857</identifier><identifier>EISBN: 1424469856</identifier><identifier>DOI: 10.1109/CVPR.2010.5540141</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Cameras ; Computer science ; Filtering algorithms ; Graphics ; Humans ; Kinematics ; Layout ; Motion analysis ; Tracking</subject><ispartof>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, p.755-762</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-5ad941f24d07212980c0ae837dff7e6ba5a9effc680920a2910bc6b1324f63403</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5540141$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5540141$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ganapathi, Varun</creatorcontrib><creatorcontrib>Plagemann, Christian</creatorcontrib><creatorcontrib>Koller, Daphne</creatorcontrib><creatorcontrib>Thrun, Sebastian</creatorcontrib><title>Real time motion capture using a single time-of-flight camera</title><title>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>Markerless tracking of human pose is a hard yet relevant problem. In this paper, we derive an efficient filtering algorithm for tracking human pose using a stream of monocular depth images. The key idea is to combine an accurate generative model - which is achievable in this setting using programmable graphics hardware - with a discriminative model that provides data-driven evidence about body part locations. In each filter iteration, we apply a form of local model-based search that exploits the nature of the kinematic chain. As fast movements and occlusion can disrupt the local search, we utilize a set of discriminatively trained patch classifiers to detect body parts. We describe a novel algorithm for propagating this noisy evidence about body part locations up the kinematic chain using the unscented transform. The resulting distribution of body configurations allows us to reinitialize the model-based search. We provide extensive experimental results on 28 real-world sequences using automatic ground-truth annotations from a commercial motion capture system.</description><subject>Biological system modeling</subject><subject>Cameras</subject><subject>Computer science</subject><subject>Filtering algorithms</subject><subject>Graphics</subject><subject>Humans</subject><subject>Kinematics</subject><subject>Layout</subject><subject>Motion analysis</subject><subject>Tracking</subject><issn>1063-6919</issn><isbn>1424469848</isbn><isbn>9781424469840</isbn><isbn>142446983X</isbn><isbn>9781424469833</isbn><isbn>9781424469857</isbn><isbn>1424469856</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj8FKAzEURSMq2FY_QNzkB1LfSzKZZOFCilWhoBQVd-XNzEuNzHTKzHTh31u14Opw4HDhCnGJMEWEcD17e15ONew1yyygxSMxRqutdcGb9-N_sf5EjBCcUS5gOBPjvv8E0CbXMBI3S6ZaDqlh2bRDajeypO2w61ju-rRZS5I_qPk3UW1UsU7rj2FfNdzRuTiNVPd8ceBEvM7vXmYPavF0_zi7XahS-zCojKpgMWpbQa5RBw8lEHuTVzHm7ArKKHCMpfMQNJAOCEXpCjTaRmcsmIm4-ttNzLzadqmh7mt1-G2-AVV6SVI</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Ganapathi, Varun</creator><creator>Plagemann, Christian</creator><creator>Koller, Daphne</creator><creator>Thrun, Sebastian</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201006</creationdate><title>Real time motion capture using a single time-of-flight camera</title><author>Ganapathi, Varun ; Plagemann, Christian ; Koller, Daphne ; Thrun, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-5ad941f24d07212980c0ae837dff7e6ba5a9effc680920a2910bc6b1324f63403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological system modeling</topic><topic>Cameras</topic><topic>Computer science</topic><topic>Filtering algorithms</topic><topic>Graphics</topic><topic>Humans</topic><topic>Kinematics</topic><topic>Layout</topic><topic>Motion analysis</topic><topic>Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Ganapathi, Varun</creatorcontrib><creatorcontrib>Plagemann, Christian</creatorcontrib><creatorcontrib>Koller, Daphne</creatorcontrib><creatorcontrib>Thrun, Sebastian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ganapathi, Varun</au><au>Plagemann, Christian</au><au>Koller, Daphne</au><au>Thrun, Sebastian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Real time motion capture using a single time-of-flight camera</atitle><btitle>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2010-06</date><risdate>2010</risdate><spage>755</spage><epage>762</epage><pages>755-762</pages><issn>1063-6919</issn><isbn>1424469848</isbn><isbn>9781424469840</isbn><eisbn>142446983X</eisbn><eisbn>9781424469833</eisbn><eisbn>9781424469857</eisbn><eisbn>1424469856</eisbn><abstract>Markerless tracking of human pose is a hard yet relevant problem. In this paper, we derive an efficient filtering algorithm for tracking human pose using a stream of monocular depth images. The key idea is to combine an accurate generative model - which is achievable in this setting using programmable graphics hardware - with a discriminative model that provides data-driven evidence about body part locations. In each filter iteration, we apply a form of local model-based search that exploits the nature of the kinematic chain. As fast movements and occlusion can disrupt the local search, we utilize a set of discriminatively trained patch classifiers to detect body parts. We describe a novel algorithm for propagating this noisy evidence about body part locations up the kinematic chain using the unscented transform. The resulting distribution of body configurations allows us to reinitialize the model-based search. We provide extensive experimental results on 28 real-world sequences using automatic ground-truth annotations from a commercial motion capture system.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2010.5540141</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6919
ispartof 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, p.755-762
issn 1063-6919
language eng
recordid cdi_ieee_primary_5540141
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Biological system modeling
Cameras
Computer science
Filtering algorithms
Graphics
Humans
Kinematics
Layout
Motion analysis
Tracking
title Real time motion capture using a single time-of-flight camera
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Real%20time%20motion%20capture%20using%20a%20single%20time-of-flight%20camera&rft.btitle=2010%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Ganapathi,%20Varun&rft.date=2010-06&rft.spage=755&rft.epage=762&rft.pages=755-762&rft.issn=1063-6919&rft.isbn=1424469848&rft.isbn_list=9781424469840&rft_id=info:doi/10.1109/CVPR.2010.5540141&rft_dat=%3Cieee_6IE%3E5540141%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=142446983X&rft.eisbn_list=9781424469833&rft.eisbn_list=9781424469857&rft.eisbn_list=1424469856&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5540141&rfr_iscdi=true