Real time motion capture using a single time-of-flight camera
Markerless tracking of human pose is a hard yet relevant problem. In this paper, we derive an efficient filtering algorithm for tracking human pose using a stream of monocular depth images. The key idea is to combine an accurate generative model - which is achievable in this setting using programmab...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 762 |
---|---|
container_issue | |
container_start_page | 755 |
container_title | |
container_volume | |
creator | Ganapathi, Varun Plagemann, Christian Koller, Daphne Thrun, Sebastian |
description | Markerless tracking of human pose is a hard yet relevant problem. In this paper, we derive an efficient filtering algorithm for tracking human pose using a stream of monocular depth images. The key idea is to combine an accurate generative model - which is achievable in this setting using programmable graphics hardware - with a discriminative model that provides data-driven evidence about body part locations. In each filter iteration, we apply a form of local model-based search that exploits the nature of the kinematic chain. As fast movements and occlusion can disrupt the local search, we utilize a set of discriminatively trained patch classifiers to detect body parts. We describe a novel algorithm for propagating this noisy evidence about body part locations up the kinematic chain using the unscented transform. The resulting distribution of body configurations allows us to reinitialize the model-based search. We provide extensive experimental results on 28 real-world sequences using automatic ground-truth annotations from a commercial motion capture system. |
doi_str_mv | 10.1109/CVPR.2010.5540141 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5540141</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5540141</ieee_id><sourcerecordid>5540141</sourcerecordid><originalsourceid>FETCH-LOGICAL-c289t-5ad941f24d07212980c0ae837dff7e6ba5a9effc680920a2910bc6b1324f63403</originalsourceid><addsrcrecordid>eNpFj8FKAzEURSMq2FY_QNzkB1LfSzKZZOFCilWhoBQVd-XNzEuNzHTKzHTh31u14Opw4HDhCnGJMEWEcD17e15ONew1yyygxSMxRqutdcGb9-N_sf5EjBCcUS5gOBPjvv8E0CbXMBI3S6ZaDqlh2bRDajeypO2w61ju-rRZS5I_qPk3UW1UsU7rj2FfNdzRuTiNVPd8ceBEvM7vXmYPavF0_zi7XahS-zCojKpgMWpbQa5RBw8lEHuTVzHm7ArKKHCMpfMQNJAOCEXpCjTaRmcsmIm4-ttNzLzadqmh7mt1-G2-AVV6SVI</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Real time motion capture using a single time-of-flight camera</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ganapathi, Varun ; Plagemann, Christian ; Koller, Daphne ; Thrun, Sebastian</creator><creatorcontrib>Ganapathi, Varun ; Plagemann, Christian ; Koller, Daphne ; Thrun, Sebastian</creatorcontrib><description>Markerless tracking of human pose is a hard yet relevant problem. In this paper, we derive an efficient filtering algorithm for tracking human pose using a stream of monocular depth images. The key idea is to combine an accurate generative model - which is achievable in this setting using programmable graphics hardware - with a discriminative model that provides data-driven evidence about body part locations. In each filter iteration, we apply a form of local model-based search that exploits the nature of the kinematic chain. As fast movements and occlusion can disrupt the local search, we utilize a set of discriminatively trained patch classifiers to detect body parts. We describe a novel algorithm for propagating this noisy evidence about body part locations up the kinematic chain using the unscented transform. The resulting distribution of body configurations allows us to reinitialize the model-based search. We provide extensive experimental results on 28 real-world sequences using automatic ground-truth annotations from a commercial motion capture system.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 1424469848</identifier><identifier>ISBN: 9781424469840</identifier><identifier>EISBN: 142446983X</identifier><identifier>EISBN: 9781424469833</identifier><identifier>EISBN: 9781424469857</identifier><identifier>EISBN: 1424469856</identifier><identifier>DOI: 10.1109/CVPR.2010.5540141</identifier><language>eng</language><publisher>IEEE</publisher><subject>Biological system modeling ; Cameras ; Computer science ; Filtering algorithms ; Graphics ; Humans ; Kinematics ; Layout ; Motion analysis ; Tracking</subject><ispartof>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, p.755-762</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c289t-5ad941f24d07212980c0ae837dff7e6ba5a9effc680920a2910bc6b1324f63403</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5540141$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2056,27924,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5540141$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ganapathi, Varun</creatorcontrib><creatorcontrib>Plagemann, Christian</creatorcontrib><creatorcontrib>Koller, Daphne</creatorcontrib><creatorcontrib>Thrun, Sebastian</creatorcontrib><title>Real time motion capture using a single time-of-flight camera</title><title>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><description>Markerless tracking of human pose is a hard yet relevant problem. In this paper, we derive an efficient filtering algorithm for tracking human pose using a stream of monocular depth images. The key idea is to combine an accurate generative model - which is achievable in this setting using programmable graphics hardware - with a discriminative model that provides data-driven evidence about body part locations. In each filter iteration, we apply a form of local model-based search that exploits the nature of the kinematic chain. As fast movements and occlusion can disrupt the local search, we utilize a set of discriminatively trained patch classifiers to detect body parts. We describe a novel algorithm for propagating this noisy evidence about body part locations up the kinematic chain using the unscented transform. The resulting distribution of body configurations allows us to reinitialize the model-based search. We provide extensive experimental results on 28 real-world sequences using automatic ground-truth annotations from a commercial motion capture system.</description><subject>Biological system modeling</subject><subject>Cameras</subject><subject>Computer science</subject><subject>Filtering algorithms</subject><subject>Graphics</subject><subject>Humans</subject><subject>Kinematics</subject><subject>Layout</subject><subject>Motion analysis</subject><subject>Tracking</subject><issn>1063-6919</issn><isbn>1424469848</isbn><isbn>9781424469840</isbn><isbn>142446983X</isbn><isbn>9781424469833</isbn><isbn>9781424469857</isbn><isbn>1424469856</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFj8FKAzEURSMq2FY_QNzkB1LfSzKZZOFCilWhoBQVd-XNzEuNzHTKzHTh31u14Opw4HDhCnGJMEWEcD17e15ONew1yyygxSMxRqutdcGb9-N_sf5EjBCcUS5gOBPjvv8E0CbXMBI3S6ZaDqlh2bRDajeypO2w61ju-rRZS5I_qPk3UW1UsU7rj2FfNdzRuTiNVPd8ceBEvM7vXmYPavF0_zi7XahS-zCojKpgMWpbQa5RBw8lEHuTVzHm7ArKKHCMpfMQNJAOCEXpCjTaRmcsmIm4-ttNzLzadqmh7mt1-G2-AVV6SVI</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Ganapathi, Varun</creator><creator>Plagemann, Christian</creator><creator>Koller, Daphne</creator><creator>Thrun, Sebastian</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201006</creationdate><title>Real time motion capture using a single time-of-flight camera</title><author>Ganapathi, Varun ; Plagemann, Christian ; Koller, Daphne ; Thrun, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c289t-5ad941f24d07212980c0ae837dff7e6ba5a9effc680920a2910bc6b1324f63403</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Biological system modeling</topic><topic>Cameras</topic><topic>Computer science</topic><topic>Filtering algorithms</topic><topic>Graphics</topic><topic>Humans</topic><topic>Kinematics</topic><topic>Layout</topic><topic>Motion analysis</topic><topic>Tracking</topic><toplevel>online_resources</toplevel><creatorcontrib>Ganapathi, Varun</creatorcontrib><creatorcontrib>Plagemann, Christian</creatorcontrib><creatorcontrib>Koller, Daphne</creatorcontrib><creatorcontrib>Thrun, Sebastian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ganapathi, Varun</au><au>Plagemann, Christian</au><au>Koller, Daphne</au><au>Thrun, Sebastian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Real time motion capture using a single time-of-flight camera</atitle><btitle>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</btitle><stitle>CVPR</stitle><date>2010-06</date><risdate>2010</risdate><spage>755</spage><epage>762</epage><pages>755-762</pages><issn>1063-6919</issn><isbn>1424469848</isbn><isbn>9781424469840</isbn><eisbn>142446983X</eisbn><eisbn>9781424469833</eisbn><eisbn>9781424469857</eisbn><eisbn>1424469856</eisbn><abstract>Markerless tracking of human pose is a hard yet relevant problem. In this paper, we derive an efficient filtering algorithm for tracking human pose using a stream of monocular depth images. The key idea is to combine an accurate generative model - which is achievable in this setting using programmable graphics hardware - with a discriminative model that provides data-driven evidence about body part locations. In each filter iteration, we apply a form of local model-based search that exploits the nature of the kinematic chain. As fast movements and occlusion can disrupt the local search, we utilize a set of discriminatively trained patch classifiers to detect body parts. We describe a novel algorithm for propagating this noisy evidence about body part locations up the kinematic chain using the unscented transform. The resulting distribution of body configurations allows us to reinitialize the model-based search. We provide extensive experimental results on 28 real-world sequences using automatic ground-truth annotations from a commercial motion capture system.</abstract><pub>IEEE</pub><doi>10.1109/CVPR.2010.5540141</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010, p.755-762 |
issn | 1063-6919 |
language | eng |
recordid | cdi_ieee_primary_5540141 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Biological system modeling Cameras Computer science Filtering algorithms Graphics Humans Kinematics Layout Motion analysis Tracking |
title | Real time motion capture using a single time-of-flight camera |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T00%3A07%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Real%20time%20motion%20capture%20using%20a%20single%20time-of-flight%20camera&rft.btitle=2010%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Ganapathi,%20Varun&rft.date=2010-06&rft.spage=755&rft.epage=762&rft.pages=755-762&rft.issn=1063-6919&rft.isbn=1424469848&rft.isbn_list=9781424469840&rft_id=info:doi/10.1109/CVPR.2010.5540141&rft_dat=%3Cieee_6IE%3E5540141%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=142446983X&rft.eisbn_list=9781424469833&rft.eisbn_list=9781424469857&rft.eisbn_list=1424469856&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5540141&rfr_iscdi=true |