Multi-domain, higher order level set scheme for 3D image segmentation on the GPU
Level set method based segmentation provides an efficient tool for topological and geometrical shape handling. Conventional level set surfaces are only C 0 continuous since the level set evolution involves linear interpolation to compute derivatives. Bajaj et al. present a higher order method to eva...
Gespeichert in:
Veröffentlicht in: | 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2010-06, Vol.2010, p.2211-2216 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2216 |
---|---|
container_issue | |
container_start_page | 2211 |
container_title | 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition |
container_volume | 2010 |
creator | Sharma, Ojaswa Qin Zhang Anton, François Bajaj, Chandrajit |
description | Level set method based segmentation provides an efficient tool for topological and geometrical shape handling. Conventional level set surfaces are only C 0 continuous since the level set evolution involves linear interpolation to compute derivatives. Bajaj et al. present a higher order method to evaluate level set surfaces that are C 2 continuous, but are slow due to high computational burden. In this paper, we provide a higher order GPU based solver for fast and efficient segmentation of large volumetric images. We also extend the higher order method to multi-domain segmentation. Our streaming solver is efficient in memory usage. |
doi_str_mv | 10.1109/CVPR.2010.5539902 |
format | Article |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_5539902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5539902</ieee_id><sourcerecordid>1835409987</sourcerecordid><originalsourceid>FETCH-LOGICAL-i329t-391e9ffbc48a370b8a12c90e42900199a1e635c1b6a298e98dc233077dd416603</originalsourceid><addsrcrecordid>eNpVUdtKA0EMHW9oW_0AEWQefXBr5tLdyYsg9QoVi6j4tszupt2RveheBP_eAesNQkJyDueEhLF9AWMhAE-mT_P7sQTfTiYKEeQaGwottQ7RqOd1NhAQqiBEgRu_gDabf4AdNmzbFwCpIgnbbEcqkEaCGbD5bV90Lsjq0rrqmOdumVPD6ybzuaB3KnhLHW_TnErii7rh6py70i7Jz5clVZ3tXF1xH11O_Gr-uMu2FrZoaW9VR-zx8uJheh3M7q5upmezwCmJXaBQEC4WSaqNVREkxgqZIpCWCCAQraBQTVKRhFaiITRZKpWCKMoyLcIQ1Iidfum-9klJWepXaWwRvzZ-u-Yjrq2L_yOVy-Nl_R4rHQrpLzFiRyuBpn7rqe3i0rUpFYWtqO7bWBg10YBoIk89_Ov1Y_J9Rk84-CI4IvqBV-9Sn45BgWw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835409987</pqid></control><display><type>article</type><title>Multi-domain, higher order level set scheme for 3D image segmentation on the GPU</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sharma, Ojaswa ; Qin Zhang ; Anton, François ; Bajaj, Chandrajit</creator><creatorcontrib>Sharma, Ojaswa ; Qin Zhang ; Anton, François ; Bajaj, Chandrajit</creatorcontrib><description>Level set method based segmentation provides an efficient tool for topological and geometrical shape handling. Conventional level set surfaces are only C 0 continuous since the level set evolution involves linear interpolation to compute derivatives. Bajaj et al. present a higher order method to evaluate level set surfaces that are C 2 continuous, but are slow due to high computational burden. In this paper, we provide a higher order GPU based solver for fast and efficient segmentation of large volumetric images. We also extend the higher order method to multi-domain segmentation. Our streaming solver is efficient in memory usage.</description><identifier>ISSN: 1063-6919</identifier><identifier>ISBN: 1424469848</identifier><identifier>ISBN: 9781424469840</identifier><identifier>EISSN: 1063-6919</identifier><identifier>EISBN: 142446983X</identifier><identifier>EISBN: 9781424469833</identifier><identifier>EISBN: 9781424469857</identifier><identifier>EISBN: 1424469856</identifier><identifier>DOI: 10.1109/CVPR.2010.5539902</identifier><identifier>PMID: 23028208</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Image segmentation ; Level set</subject><ispartof>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010-06, Vol.2010, p.2211-2216</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5539902$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,777,781,786,787,882,2052,27906,54901</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5539902$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23028208$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sharma, Ojaswa</creatorcontrib><creatorcontrib>Qin Zhang</creatorcontrib><creatorcontrib>Anton, François</creatorcontrib><creatorcontrib>Bajaj, Chandrajit</creatorcontrib><title>Multi-domain, higher order level set scheme for 3D image segmentation on the GPU</title><title>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</title><addtitle>CVPR</addtitle><addtitle>Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit</addtitle><description>Level set method based segmentation provides an efficient tool for topological and geometrical shape handling. Conventional level set surfaces are only C 0 continuous since the level set evolution involves linear interpolation to compute derivatives. Bajaj et al. present a higher order method to evaluate level set surfaces that are C 2 continuous, but are slow due to high computational burden. In this paper, we provide a higher order GPU based solver for fast and efficient segmentation of large volumetric images. We also extend the higher order method to multi-domain segmentation. Our streaming solver is efficient in memory usage.</description><subject>Image segmentation</subject><subject>Level set</subject><issn>1063-6919</issn><issn>1063-6919</issn><isbn>1424469848</isbn><isbn>9781424469840</isbn><isbn>142446983X</isbn><isbn>9781424469833</isbn><isbn>9781424469857</isbn><isbn>1424469856</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUdtKA0EMHW9oW_0AEWQefXBr5tLdyYsg9QoVi6j4tszupt2RveheBP_eAesNQkJyDueEhLF9AWMhAE-mT_P7sQTfTiYKEeQaGwottQ7RqOd1NhAQqiBEgRu_gDabf4AdNmzbFwCpIgnbbEcqkEaCGbD5bV90Lsjq0rrqmOdumVPD6ybzuaB3KnhLHW_TnErii7rh6py70i7Jz5clVZ3tXF1xH11O_Gr-uMu2FrZoaW9VR-zx8uJheh3M7q5upmezwCmJXaBQEC4WSaqNVREkxgqZIpCWCCAQraBQTVKRhFaiITRZKpWCKMoyLcIQ1Iidfum-9klJWepXaWwRvzZ-u-Yjrq2L_yOVy-Nl_R4rHQrpLzFiRyuBpn7rqe3i0rUpFYWtqO7bWBg10YBoIk89_Ov1Y_J9Rk84-CI4IvqBV-9Sn45BgWw</recordid><startdate>20100613</startdate><enddate>20100613</enddate><creator>Sharma, Ojaswa</creator><creator>Qin Zhang</creator><creator>Anton, François</creator><creator>Bajaj, Chandrajit</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100613</creationdate><title>Multi-domain, higher order level set scheme for 3D image segmentation on the GPU</title><author>Sharma, Ojaswa ; Qin Zhang ; Anton, François ; Bajaj, Chandrajit</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i329t-391e9ffbc48a370b8a12c90e42900199a1e635c1b6a298e98dc233077dd416603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Image segmentation</topic><topic>Level set</topic><toplevel>online_resources</toplevel><creatorcontrib>Sharma, Ojaswa</creatorcontrib><creatorcontrib>Qin Zhang</creatorcontrib><creatorcontrib>Anton, François</creatorcontrib><creatorcontrib>Bajaj, Chandrajit</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sharma, Ojaswa</au><au>Qin Zhang</au><au>Anton, François</au><au>Bajaj, Chandrajit</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multi-domain, higher order level set scheme for 3D image segmentation on the GPU</atitle><jtitle>2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition</jtitle><stitle>CVPR</stitle><addtitle>Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit</addtitle><date>2010-06-13</date><risdate>2010</risdate><volume>2010</volume><spage>2211</spage><epage>2216</epage><pages>2211-2216</pages><issn>1063-6919</issn><eissn>1063-6919</eissn><isbn>1424469848</isbn><isbn>9781424469840</isbn><eisbn>142446983X</eisbn><eisbn>9781424469833</eisbn><eisbn>9781424469857</eisbn><eisbn>1424469856</eisbn><abstract>Level set method based segmentation provides an efficient tool for topological and geometrical shape handling. Conventional level set surfaces are only C 0 continuous since the level set evolution involves linear interpolation to compute derivatives. Bajaj et al. present a higher order method to evaluate level set surfaces that are C 2 continuous, but are slow due to high computational burden. In this paper, we provide a higher order GPU based solver for fast and efficient segmentation of large volumetric images. We also extend the higher order method to multi-domain segmentation. Our streaming solver is efficient in memory usage.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>23028208</pmid><doi>10.1109/CVPR.2010.5539902</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1063-6919 |
ispartof | 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010-06, Vol.2010, p.2211-2216 |
issn | 1063-6919 1063-6919 |
language | eng |
recordid | cdi_ieee_primary_5539902 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Image segmentation Level set |
title | Multi-domain, higher order level set scheme for 3D image segmentation on the GPU |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A53%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multi-domain,%20higher%20order%20level%20set%20scheme%20for%203D%20image%20segmentation%20on%20the%20GPU&rft.jtitle=2010%20IEEE%20Computer%20Society%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition&rft.au=Sharma,%20Ojaswa&rft.date=2010-06-13&rft.volume=2010&rft.spage=2211&rft.epage=2216&rft.pages=2211-2216&rft.issn=1063-6919&rft.eissn=1063-6919&rft.isbn=1424469848&rft.isbn_list=9781424469840&rft_id=info:doi/10.1109/CVPR.2010.5539902&rft_dat=%3Cproquest_6IE%3E1835409987%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=142446983X&rft.eisbn_list=9781424469833&rft.eisbn_list=9781424469857&rft.eisbn_list=1424469856&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835409987&rft_id=info:pmid/23028208&rft_ieee_id=5539902&rfr_iscdi=true |