Hardware accelerated convolutional neural networks for synthetic vision systems

In this paper we present a scalable hardware architecture to implement large-scale convolutional neural networks and state-of-the-art multi-layered artificial vision systems. This system is fully digital and is a modular vision engine with the goal of performing real-time detection, recognition and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Farabet, C, Martini, B, Akselrod, P, Talay, S, LeCun, Y, Culurciello, E
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we present a scalable hardware architecture to implement large-scale convolutional neural networks and state-of-the-art multi-layered artificial vision systems. This system is fully digital and is a modular vision engine with the goal of performing real-time detection, recognition and segmentation of mega-pixel images. We present a performance comparison between a software, FPGA and ASIC implementation that shows a speed up in custom hardware implementations.
ISSN:0271-4302
2158-1525
DOI:10.1109/ISCAS.2010.5537908