Studies of inference rule creation using LAPART
The logical neural architecture LAPART is used in a mode that allows through learning the easy creation and extraction of IF-THEN inference rules from data. This paper first describes ART1 and the complement coded stack input binary representations. Next, we present a more detailed discussion of LAP...
Gespeichert in:
Hauptverfasser: | , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | ICNN6 vol.3 |
---|---|
container_issue | |
container_start_page | ICNN1 |
container_title | |
container_volume | 3 |
creator | Caudell, T.P. Healy, M.J. |
description | The logical neural architecture LAPART is used in a mode that allows through learning the easy creation and extraction of IF-THEN inference rules from data. This paper first describes ART1 and the complement coded stack input binary representations. Next, we present a more detailed discussion of LAPART. Then we show how rules are learned and extracted from the memory templates of the ART1s. We present a pedagogical example of rules extracted from a simple data set. Finally, we note that a fundamental difference between LAPART rule-based systems and regular rule-based systems is the existence of a "rule attractor" that can enhance system generalization in a controlled manner. |
doi_str_mv | 10.1109/FUZZY.1996.553543 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_553543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>553543</ieee_id><sourcerecordid>553543</sourcerecordid><originalsourceid>FETCH-ieee_primary_5535433</originalsourceid><addsrcrecordid>eNpjYJA0NNAzNDSw1HcLjYqK1DO0tDTTMzU1NjUxZmbgtTS3MAAiY2MzE1MjDgbe4uIsAyAwMTU1sjDkZNAPLilNyUwtVshPU8jMS0stSs1LTlUoKs1JVUguSk0syczPUygtzsxLV_BxDHAMCuFhYE1LzClO5YXS3AxSbq4hzh66mampqfEFRZm5iUWV8RDbjfFKAgDLpzJm</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Studies of inference rule creation using LAPART</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Caudell, T.P. ; Healy, M.J.</creator><creatorcontrib>Caudell, T.P. ; Healy, M.J.</creatorcontrib><description>The logical neural architecture LAPART is used in a mode that allows through learning the easy creation and extraction of IF-THEN inference rules from data. This paper first describes ART1 and the complement coded stack input binary representations. Next, we present a more detailed discussion of LAPART. Then we show how rules are learned and extracted from the memory templates of the ART1s. We present a pedagogical example of rules extracted from a simple data set. Finally, we note that a fundamental difference between LAPART rule-based systems and regular rule-based systems is the existence of a "rule attractor" that can enhance system generalization in a controlled manner.</description><identifier>ISBN: 9780780336452</identifier><identifier>ISBN: 0780336453</identifier><identifier>DOI: 10.1109/FUZZY.1996.553543</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Artificial neural networks ; Computer architecture ; Control systems ; Data mining ; History ; Humans ; Knowledge based systems ; Machine learning ; Neural networks</subject><ispartof>Proceedings of IEEE 5th International Fuzzy Systems, 1996, Vol.3, p.ICNN1-ICNN6 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/553543$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/553543$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Caudell, T.P.</creatorcontrib><creatorcontrib>Healy, M.J.</creatorcontrib><title>Studies of inference rule creation using LAPART</title><title>Proceedings of IEEE 5th International Fuzzy Systems</title><addtitle>FUZZY</addtitle><description>The logical neural architecture LAPART is used in a mode that allows through learning the easy creation and extraction of IF-THEN inference rules from data. This paper first describes ART1 and the complement coded stack input binary representations. Next, we present a more detailed discussion of LAPART. Then we show how rules are learned and extracted from the memory templates of the ART1s. We present a pedagogical example of rules extracted from a simple data set. Finally, we note that a fundamental difference between LAPART rule-based systems and regular rule-based systems is the existence of a "rule attractor" that can enhance system generalization in a controlled manner.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Computer architecture</subject><subject>Control systems</subject><subject>Data mining</subject><subject>History</subject><subject>Humans</subject><subject>Knowledge based systems</subject><subject>Machine learning</subject><subject>Neural networks</subject><isbn>9780780336452</isbn><isbn>0780336453</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpjYJA0NNAzNDSw1HcLjYqK1DO0tDTTMzU1NjUxZmbgtTS3MAAiY2MzE1MjDgbe4uIsAyAwMTU1sjDkZNAPLilNyUwtVshPU8jMS0stSs1LTlUoKs1JVUguSk0syczPUygtzsxLV_BxDHAMCuFhYE1LzClO5YXS3AxSbq4hzh66mampqfEFRZm5iUWV8RDbjfFKAgDLpzJm</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Caudell, T.P.</creator><creator>Healy, M.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>Studies of inference rule creation using LAPART</title><author>Caudell, T.P. ; Healy, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_5535433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Computer architecture</topic><topic>Control systems</topic><topic>Data mining</topic><topic>History</topic><topic>Humans</topic><topic>Knowledge based systems</topic><topic>Machine learning</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Caudell, T.P.</creatorcontrib><creatorcontrib>Healy, M.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Caudell, T.P.</au><au>Healy, M.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Studies of inference rule creation using LAPART</atitle><btitle>Proceedings of IEEE 5th International Fuzzy Systems</btitle><stitle>FUZZY</stitle><date>1996</date><risdate>1996</risdate><volume>3</volume><spage>ICNN1</spage><epage>ICNN6 vol.3</epage><pages>ICNN1-ICNN6 vol.3</pages><isbn>9780780336452</isbn><isbn>0780336453</isbn><abstract>The logical neural architecture LAPART is used in a mode that allows through learning the easy creation and extraction of IF-THEN inference rules from data. This paper first describes ART1 and the complement coded stack input binary representations. Next, we present a more detailed discussion of LAPART. Then we show how rules are learned and extracted from the memory templates of the ART1s. We present a pedagogical example of rules extracted from a simple data set. Finally, we note that a fundamental difference between LAPART rule-based systems and regular rule-based systems is the existence of a "rule attractor" that can enhance system generalization in a controlled manner.</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.1996.553543</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 9780780336452 |
ispartof | Proceedings of IEEE 5th International Fuzzy Systems, 1996, Vol.3, p.ICNN1-ICNN6 vol.3 |
issn | |
language | eng |
recordid | cdi_ieee_primary_553543 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Artificial intelligence Artificial neural networks Computer architecture Control systems Data mining History Humans Knowledge based systems Machine learning Neural networks |
title | Studies of inference rule creation using LAPART |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A43%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Studies%20of%20inference%20rule%20creation%20using%20LAPART&rft.btitle=Proceedings%20of%20IEEE%205th%20International%20Fuzzy%20Systems&rft.au=Caudell,%20T.P.&rft.date=1996&rft.volume=3&rft.spage=ICNN1&rft.epage=ICNN6%20vol.3&rft.pages=ICNN1-ICNN6%20vol.3&rft.isbn=9780780336452&rft.isbn_list=0780336453&rft_id=info:doi/10.1109/FUZZY.1996.553543&rft_dat=%3Cieee_6IE%3E553543%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=553543&rfr_iscdi=true |