Studies of inference rule creation using LAPART

The logical neural architecture LAPART is used in a mode that allows through learning the easy creation and extraction of IF-THEN inference rules from data. This paper first describes ART1 and the complement coded stack input binary representations. Next, we present a more detailed discussion of LAP...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Caudell, T.P., Healy, M.J.
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page ICNN6 vol.3
container_issue
container_start_page ICNN1
container_title
container_volume 3
creator Caudell, T.P.
Healy, M.J.
description The logical neural architecture LAPART is used in a mode that allows through learning the easy creation and extraction of IF-THEN inference rules from data. This paper first describes ART1 and the complement coded stack input binary representations. Next, we present a more detailed discussion of LAPART. Then we show how rules are learned and extracted from the memory templates of the ART1s. We present a pedagogical example of rules extracted from a simple data set. Finally, we note that a fundamental difference between LAPART rule-based systems and regular rule-based systems is the existence of a "rule attractor" that can enhance system generalization in a controlled manner.
doi_str_mv 10.1109/FUZZY.1996.553543
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_553543</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>553543</ieee_id><sourcerecordid>553543</sourcerecordid><originalsourceid>FETCH-ieee_primary_5535433</originalsourceid><addsrcrecordid>eNpjYJA0NNAzNDSw1HcLjYqK1DO0tDTTMzU1NjUxZmbgtTS3MAAiY2MzE1MjDgbe4uIsAyAwMTU1sjDkZNAPLilNyUwtVshPU8jMS0stSs1LTlUoKs1JVUguSk0syczPUygtzsxLV_BxDHAMCuFhYE1LzClO5YXS3AxSbq4hzh66mampqfEFRZm5iUWV8RDbjfFKAgDLpzJm</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Studies of inference rule creation using LAPART</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Caudell, T.P. ; Healy, M.J.</creator><creatorcontrib>Caudell, T.P. ; Healy, M.J.</creatorcontrib><description>The logical neural architecture LAPART is used in a mode that allows through learning the easy creation and extraction of IF-THEN inference rules from data. This paper first describes ART1 and the complement coded stack input binary representations. Next, we present a more detailed discussion of LAPART. Then we show how rules are learned and extracted from the memory templates of the ART1s. We present a pedagogical example of rules extracted from a simple data set. Finally, we note that a fundamental difference between LAPART rule-based systems and regular rule-based systems is the existence of a "rule attractor" that can enhance system generalization in a controlled manner.</description><identifier>ISBN: 9780780336452</identifier><identifier>ISBN: 0780336453</identifier><identifier>DOI: 10.1109/FUZZY.1996.553543</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Artificial neural networks ; Computer architecture ; Control systems ; Data mining ; History ; Humans ; Knowledge based systems ; Machine learning ; Neural networks</subject><ispartof>Proceedings of IEEE 5th International Fuzzy Systems, 1996, Vol.3, p.ICNN1-ICNN6 vol.3</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/553543$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/553543$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Caudell, T.P.</creatorcontrib><creatorcontrib>Healy, M.J.</creatorcontrib><title>Studies of inference rule creation using LAPART</title><title>Proceedings of IEEE 5th International Fuzzy Systems</title><addtitle>FUZZY</addtitle><description>The logical neural architecture LAPART is used in a mode that allows through learning the easy creation and extraction of IF-THEN inference rules from data. This paper first describes ART1 and the complement coded stack input binary representations. Next, we present a more detailed discussion of LAPART. Then we show how rules are learned and extracted from the memory templates of the ART1s. We present a pedagogical example of rules extracted from a simple data set. Finally, we note that a fundamental difference between LAPART rule-based systems and regular rule-based systems is the existence of a "rule attractor" that can enhance system generalization in a controlled manner.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Computer architecture</subject><subject>Control systems</subject><subject>Data mining</subject><subject>History</subject><subject>Humans</subject><subject>Knowledge based systems</subject><subject>Machine learning</subject><subject>Neural networks</subject><isbn>9780780336452</isbn><isbn>0780336453</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>1996</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpjYJA0NNAzNDSw1HcLjYqK1DO0tDTTMzU1NjUxZmbgtTS3MAAiY2MzE1MjDgbe4uIsAyAwMTU1sjDkZNAPLilNyUwtVshPU8jMS0stSs1LTlUoKs1JVUguSk0syczPUygtzsxLV_BxDHAMCuFhYE1LzClO5YXS3AxSbq4hzh66mampqfEFRZm5iUWV8RDbjfFKAgDLpzJm</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Caudell, T.P.</creator><creator>Healy, M.J.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>1996</creationdate><title>Studies of inference rule creation using LAPART</title><author>Caudell, T.P. ; Healy, M.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-ieee_primary_5535433</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>1996</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Computer architecture</topic><topic>Control systems</topic><topic>Data mining</topic><topic>History</topic><topic>Humans</topic><topic>Knowledge based systems</topic><topic>Machine learning</topic><topic>Neural networks</topic><toplevel>online_resources</toplevel><creatorcontrib>Caudell, T.P.</creatorcontrib><creatorcontrib>Healy, M.J.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Caudell, T.P.</au><au>Healy, M.J.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Studies of inference rule creation using LAPART</atitle><btitle>Proceedings of IEEE 5th International Fuzzy Systems</btitle><stitle>FUZZY</stitle><date>1996</date><risdate>1996</risdate><volume>3</volume><spage>ICNN1</spage><epage>ICNN6 vol.3</epage><pages>ICNN1-ICNN6 vol.3</pages><isbn>9780780336452</isbn><isbn>0780336453</isbn><abstract>The logical neural architecture LAPART is used in a mode that allows through learning the easy creation and extraction of IF-THEN inference rules from data. This paper first describes ART1 and the complement coded stack input binary representations. Next, we present a more detailed discussion of LAPART. Then we show how rules are learned and extracted from the memory templates of the ART1s. We present a pedagogical example of rules extracted from a simple data set. Finally, we note that a fundamental difference between LAPART rule-based systems and regular rule-based systems is the existence of a "rule attractor" that can enhance system generalization in a controlled manner.</abstract><pub>IEEE</pub><doi>10.1109/FUZZY.1996.553543</doi></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9780780336452
ispartof Proceedings of IEEE 5th International Fuzzy Systems, 1996, Vol.3, p.ICNN1-ICNN6 vol.3
issn
language eng
recordid cdi_ieee_primary_553543
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Artificial intelligence
Artificial neural networks
Computer architecture
Control systems
Data mining
History
Humans
Knowledge based systems
Machine learning
Neural networks
title Studies of inference rule creation using LAPART
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T14%3A43%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Studies%20of%20inference%20rule%20creation%20using%20LAPART&rft.btitle=Proceedings%20of%20IEEE%205th%20International%20Fuzzy%20Systems&rft.au=Caudell,%20T.P.&rft.date=1996&rft.volume=3&rft.spage=ICNN1&rft.epage=ICNN6%20vol.3&rft.pages=ICNN1-ICNN6%20vol.3&rft.isbn=9780780336452&rft.isbn_list=0780336453&rft_id=info:doi/10.1109/FUZZY.1996.553543&rft_dat=%3Cieee_6IE%3E553543%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=553543&rfr_iscdi=true