Generalized (Alpha, Beta)-Fuzzy Interior Ideals in Semigroups
In this paper, we introduce the concept of (alpha,beta)-fuzzy interior ideals and discuss some fundamental properties of (alpha,beta)-fuzzy interior ideals. Alpha and beta will denote any one of ∈, q (λ,μ) ,∈v q(λ,μ) or ∈∧q (λ,μ) with α≠∈∧q (λ,μ) unless otherwise specified. When λ=0,μ=0.5, we can ge...
Gespeichert in:
Hauptverfasser: | , , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 200 |
---|---|
container_issue | |
container_start_page | 197 |
container_title | |
container_volume | 1 |
creator | Zuhua Liao Miaohan Hu Min Chen Lihua Yi Mingli Rui Jinhua Lu Chunzhi Liu |
description | In this paper, we introduce the concept of (alpha,beta)-fuzzy interior ideals and discuss some fundamental properties of (alpha,beta)-fuzzy interior ideals. Alpha and beta will denote any one of ∈, q (λ,μ) ,∈v q(λ,μ) or ∈∧q (λ,μ) with α≠∈∧q (λ,μ) unless otherwise specified. When λ=0,μ=0.5, we can get corresponding results in Jun and Song [Y. B. Jun, S. Z. Song, Generalized fuzzy interior ideals in semi groups, Inform. Sci. 2006, 176: 3079-3093]. When λ = 0,μ = 1, we can get the common results. |
doi_str_mv | 10.1109/CSO.2010.18 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5532986</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5532986</ieee_id><sourcerecordid>5532986</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-59ba50c3c936ce9ba0733644012134087022b8f772668f17a482d7e8e8fc71df3</originalsourceid><addsrcrecordid>eNpFjE1Lw0AURUekoK1duXQzSwVTZ958L1zUYGug0EW7L9PkRUfSNEzSRfPrTVHwbi7ncLmE3HM245y5l3SzngG7kL0iYy5BSm25gOt_ADki48vGAYAzN2Tatt9siFTcGnlLXpdYY_RV6LGgj_Oq-fLP9A07_5QsTn1_plndYQzHSLMCfdXSUNMNHsJnPJ6a9o6MykHi9K8nZLt436YfyWq9zNL5KgmOdYlye69YLnIndI4DMCOElpJx4EIyaxjA3pbGgNa25MZLC4VBi7bMDS9KMSEPv7cBEXdNDAcfzzulBDirxQ-ooUc_</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Generalized (Alpha, Beta)-Fuzzy Interior Ideals in Semigroups</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zuhua Liao ; Miaohan Hu ; Min Chen ; Lihua Yi ; Mingli Rui ; Jinhua Lu ; Chunzhi Liu</creator><creatorcontrib>Zuhua Liao ; Miaohan Hu ; Min Chen ; Lihua Yi ; Mingli Rui ; Jinhua Lu ; Chunzhi Liu</creatorcontrib><description>In this paper, we introduce the concept of (alpha,beta)-fuzzy interior ideals and discuss some fundamental properties of (alpha,beta)-fuzzy interior ideals. Alpha and beta will denote any one of ∈, q (λ,μ) ,∈v q(λ,μ) or ∈∧q (λ,μ) with α≠∈∧q (λ,μ) unless otherwise specified. When λ=0,μ=0.5, we can get corresponding results in Jun and Song [Y. B. Jun, S. Z. Song, Generalized fuzzy interior ideals in semi groups, Inform. Sci. 2006, 176: 3079-3093]. When λ = 0,μ = 1, we can get the common results.</description><identifier>ISBN: 1424468124</identifier><identifier>ISBN: 9781424468126</identifier><identifier>EISBN: 1424468132</identifier><identifier>EISBN: 9781424468133</identifier><identifier>DOI: 10.1109/CSO.2010.18</identifier><identifier>LCCN: 2010922297</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algebra ; fuzzy semigroups ; Fuzzy sets ; ideals ; q(? ; µ))-fuzzy interior ideals ; µ))-fuzzy semigroups</subject><ispartof>2010 Third International Joint Conference on Computational Science and Optimization, 2010, Vol.1, p.197-200</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5532986$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5532986$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zuhua Liao</creatorcontrib><creatorcontrib>Miaohan Hu</creatorcontrib><creatorcontrib>Min Chen</creatorcontrib><creatorcontrib>Lihua Yi</creatorcontrib><creatorcontrib>Mingli Rui</creatorcontrib><creatorcontrib>Jinhua Lu</creatorcontrib><creatorcontrib>Chunzhi Liu</creatorcontrib><title>Generalized (Alpha, Beta)-Fuzzy Interior Ideals in Semigroups</title><title>2010 Third International Joint Conference on Computational Science and Optimization</title><addtitle>CSO</addtitle><description>In this paper, we introduce the concept of (alpha,beta)-fuzzy interior ideals and discuss some fundamental properties of (alpha,beta)-fuzzy interior ideals. Alpha and beta will denote any one of ∈, q (λ,μ) ,∈v q(λ,μ) or ∈∧q (λ,μ) with α≠∈∧q (λ,μ) unless otherwise specified. When λ=0,μ=0.5, we can get corresponding results in Jun and Song [Y. B. Jun, S. Z. Song, Generalized fuzzy interior ideals in semi groups, Inform. Sci. 2006, 176: 3079-3093]. When λ = 0,μ = 1, we can get the common results.</description><subject>Algebra</subject><subject>fuzzy semigroups</subject><subject>Fuzzy sets</subject><subject>ideals</subject><subject>q(?</subject><subject>µ))-fuzzy interior ideals</subject><subject>µ))-fuzzy semigroups</subject><isbn>1424468124</isbn><isbn>9781424468126</isbn><isbn>1424468132</isbn><isbn>9781424468133</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFjE1Lw0AURUekoK1duXQzSwVTZ958L1zUYGug0EW7L9PkRUfSNEzSRfPrTVHwbi7ncLmE3HM245y5l3SzngG7kL0iYy5BSm25gOt_ADki48vGAYAzN2Tatt9siFTcGnlLXpdYY_RV6LGgj_Oq-fLP9A07_5QsTn1_plndYQzHSLMCfdXSUNMNHsJnPJ6a9o6MykHi9K8nZLt436YfyWq9zNL5KgmOdYlye69YLnIndI4DMCOElpJx4EIyaxjA3pbGgNa25MZLC4VBi7bMDS9KMSEPv7cBEXdNDAcfzzulBDirxQ-ooUc_</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Zuhua Liao</creator><creator>Miaohan Hu</creator><creator>Min Chen</creator><creator>Lihua Yi</creator><creator>Mingli Rui</creator><creator>Jinhua Lu</creator><creator>Chunzhi Liu</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>Generalized (Alpha, Beta)-Fuzzy Interior Ideals in Semigroups</title><author>Zuhua Liao ; Miaohan Hu ; Min Chen ; Lihua Yi ; Mingli Rui ; Jinhua Lu ; Chunzhi Liu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-59ba50c3c936ce9ba0733644012134087022b8f772668f17a482d7e8e8fc71df3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algebra</topic><topic>fuzzy semigroups</topic><topic>Fuzzy sets</topic><topic>ideals</topic><topic>q(?</topic><topic>µ))-fuzzy interior ideals</topic><topic>µ))-fuzzy semigroups</topic><toplevel>online_resources</toplevel><creatorcontrib>Zuhua Liao</creatorcontrib><creatorcontrib>Miaohan Hu</creatorcontrib><creatorcontrib>Min Chen</creatorcontrib><creatorcontrib>Lihua Yi</creatorcontrib><creatorcontrib>Mingli Rui</creatorcontrib><creatorcontrib>Jinhua Lu</creatorcontrib><creatorcontrib>Chunzhi Liu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zuhua Liao</au><au>Miaohan Hu</au><au>Min Chen</au><au>Lihua Yi</au><au>Mingli Rui</au><au>Jinhua Lu</au><au>Chunzhi Liu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Generalized (Alpha, Beta)-Fuzzy Interior Ideals in Semigroups</atitle><btitle>2010 Third International Joint Conference on Computational Science and Optimization</btitle><stitle>CSO</stitle><date>2010-05</date><risdate>2010</risdate><volume>1</volume><spage>197</spage><epage>200</epage><pages>197-200</pages><isbn>1424468124</isbn><isbn>9781424468126</isbn><eisbn>1424468132</eisbn><eisbn>9781424468133</eisbn><abstract>In this paper, we introduce the concept of (alpha,beta)-fuzzy interior ideals and discuss some fundamental properties of (alpha,beta)-fuzzy interior ideals. Alpha and beta will denote any one of ∈, q (λ,μ) ,∈v q(λ,μ) or ∈∧q (λ,μ) with α≠∈∧q (λ,μ) unless otherwise specified. When λ=0,μ=0.5, we can get corresponding results in Jun and Song [Y. B. Jun, S. Z. Song, Generalized fuzzy interior ideals in semi groups, Inform. Sci. 2006, 176: 3079-3093]. When λ = 0,μ = 1, we can get the common results.</abstract><pub>IEEE</pub><doi>10.1109/CSO.2010.18</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424468124 |
ispartof | 2010 Third International Joint Conference on Computational Science and Optimization, 2010, Vol.1, p.197-200 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5532986 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algebra fuzzy semigroups Fuzzy sets ideals q(? µ))-fuzzy interior ideals µ))-fuzzy semigroups |
title | Generalized (Alpha, Beta)-Fuzzy Interior Ideals in Semigroups |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T16%3A53%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Generalized%20(Alpha,%20Beta)-Fuzzy%20Interior%20Ideals%20in%20Semigroups&rft.btitle=2010%20Third%20International%20Joint%20Conference%20on%20Computational%20Science%20and%20Optimization&rft.au=Zuhua%20Liao&rft.date=2010-05&rft.volume=1&rft.spage=197&rft.epage=200&rft.pages=197-200&rft.isbn=1424468124&rft.isbn_list=9781424468126&rft_id=info:doi/10.1109/CSO.2010.18&rft_dat=%3Cieee_6IE%3E5532986%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424468132&rft.eisbn_list=9781424468133&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5532986&rfr_iscdi=true |