Fault progression modeling: An application to bearing diagnosis and prognosis

The successful implementation of fault diagnosis and failure prognosis algorithms to safety critical systems requires the definitions and applications of mathematically rigorous modules. These modules, including data preprocessing, feature extraction, diagnostic and prognostic algorithms, performanc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Bin Zhang, Sconyers, C, Orchard, M, Patrick, R, Vachtsevanos, G
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6998
container_issue
container_start_page 6993
container_title
container_volume
creator Bin Zhang
Sconyers, C
Orchard, M
Patrick, R
Vachtsevanos, G
description The successful implementation of fault diagnosis and failure prognosis algorithms to safety critical systems requires the definitions and applications of mathematically rigorous modules. These modules, including data preprocessing, feature extraction, diagnostic and prognostic algorithms, performance metrics definition, and a fault progression model, form an integrated architecture for system health monitoring and management. In these modules, the fault progression model is critical to detection of incipient failures as early as possible with predefined specifications and prediction of the system's remaining useful life accurately and precisely. This paper considers an oil cooler bearing of a helicopter and proposes a methodology for fault detection and failure prognosis, in which data pre-processing, feature extraction and fault progression modeling are discussed in detail. Experimental results are presented to verify the proposed methodology and fault progression model.
doi_str_mv 10.1109/ACC.2010.5531344
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5531344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5531344</ieee_id><sourcerecordid>5531344</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-7c73c152747c0b117d666bb913a513ff348945a4d83320ba0dcd4896ae798dcc3</originalsourceid><addsrcrecordid>eNo1kD1PwzAYhM2XRFq6I7H4D6T49WfMFkUUkIpYYK7e2E5klCZRHAb-PaWU6XT36G44Qm6BrQGYvS-ras3ZwSklQEh5RhYguZRGcqXPScaFKXJVaLggK2uKf6blJcmYkSIHDfaaLFL6ZAys1Swjrxv86mY6TkM7hZTi0NP94EMX-_aBlj3Fceyiw_kXzAOtA04HRH3Eth9STBR7f2wf3Q25arBLYXXSJfnYPL5Xz_n27emlKrd5BKPm3DgjHChupHGsBjBea13XFgQqEE0jZGGlQukLITirkXnnD5HGYGzhnRNLcve3G0MIu3GKe5y-d6dbxA-nnlHd</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Fault progression modeling: An application to bearing diagnosis and prognosis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Bin Zhang ; Sconyers, C ; Orchard, M ; Patrick, R ; Vachtsevanos, G</creator><creatorcontrib>Bin Zhang ; Sconyers, C ; Orchard, M ; Patrick, R ; Vachtsevanos, G</creatorcontrib><description>The successful implementation of fault diagnosis and failure prognosis algorithms to safety critical systems requires the definitions and applications of mathematically rigorous modules. These modules, including data preprocessing, feature extraction, diagnostic and prognostic algorithms, performance metrics definition, and a fault progression model, form an integrated architecture for system health monitoring and management. In these modules, the fault progression model is critical to detection of incipient failures as early as possible with predefined specifications and prediction of the system's remaining useful life accurately and precisely. This paper considers an oil cooler bearing of a helicopter and proposes a methodology for fault detection and failure prognosis, in which data pre-processing, feature extraction and fault progression modeling are discussed in detail. Experimental results are presented to verify the proposed methodology and fault progression model.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9781424474264</identifier><identifier>ISBN: 1424474264</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424474256</identifier><identifier>EISBN: 1424474272</identifier><identifier>EISBN: 9781424474271</identifier><identifier>EISBN: 9781424474257</identifier><identifier>DOI: 10.1109/ACC.2010.5531344</identifier><language>eng</language><publisher>IEEE</publisher><subject>Condition monitoring ; Data preprocessing ; Data processing ; Failure prognosis ; Fault detection ; Fault diagnosis ; Fault progression modeling ; Feature extraction ; Helicopters ; Measurement ; Petroleum ; Predictive models ; Safety</subject><ispartof>Proceedings of the 2010 American Control Conference, 2010, p.6993-6998</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5531344$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5531344$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Bin Zhang</creatorcontrib><creatorcontrib>Sconyers, C</creatorcontrib><creatorcontrib>Orchard, M</creatorcontrib><creatorcontrib>Patrick, R</creatorcontrib><creatorcontrib>Vachtsevanos, G</creatorcontrib><title>Fault progression modeling: An application to bearing diagnosis and prognosis</title><title>Proceedings of the 2010 American Control Conference</title><addtitle>ACC</addtitle><description>The successful implementation of fault diagnosis and failure prognosis algorithms to safety critical systems requires the definitions and applications of mathematically rigorous modules. These modules, including data preprocessing, feature extraction, diagnostic and prognostic algorithms, performance metrics definition, and a fault progression model, form an integrated architecture for system health monitoring and management. In these modules, the fault progression model is critical to detection of incipient failures as early as possible with predefined specifications and prediction of the system's remaining useful life accurately and precisely. This paper considers an oil cooler bearing of a helicopter and proposes a methodology for fault detection and failure prognosis, in which data pre-processing, feature extraction and fault progression modeling are discussed in detail. Experimental results are presented to verify the proposed methodology and fault progression model.</description><subject>Condition monitoring</subject><subject>Data preprocessing</subject><subject>Data processing</subject><subject>Failure prognosis</subject><subject>Fault detection</subject><subject>Fault diagnosis</subject><subject>Fault progression modeling</subject><subject>Feature extraction</subject><subject>Helicopters</subject><subject>Measurement</subject><subject>Petroleum</subject><subject>Predictive models</subject><subject>Safety</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9781424474264</isbn><isbn>1424474264</isbn><isbn>1424474256</isbn><isbn>1424474272</isbn><isbn>9781424474271</isbn><isbn>9781424474257</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kD1PwzAYhM2XRFq6I7H4D6T49WfMFkUUkIpYYK7e2E5klCZRHAb-PaWU6XT36G44Qm6BrQGYvS-ras3ZwSklQEh5RhYguZRGcqXPScaFKXJVaLggK2uKf6blJcmYkSIHDfaaLFL6ZAys1Swjrxv86mY6TkM7hZTi0NP94EMX-_aBlj3Fceyiw_kXzAOtA04HRH3Eth9STBR7f2wf3Q25arBLYXXSJfnYPL5Xz_n27emlKrd5BKPm3DgjHChupHGsBjBea13XFgQqEE0jZGGlQukLITirkXnnD5HGYGzhnRNLcve3G0MIu3GKe5y-d6dbxA-nnlHd</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Bin Zhang</creator><creator>Sconyers, C</creator><creator>Orchard, M</creator><creator>Patrick, R</creator><creator>Vachtsevanos, G</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201006</creationdate><title>Fault progression modeling: An application to bearing diagnosis and prognosis</title><author>Bin Zhang ; Sconyers, C ; Orchard, M ; Patrick, R ; Vachtsevanos, G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-7c73c152747c0b117d666bb913a513ff348945a4d83320ba0dcd4896ae798dcc3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Condition monitoring</topic><topic>Data preprocessing</topic><topic>Data processing</topic><topic>Failure prognosis</topic><topic>Fault detection</topic><topic>Fault diagnosis</topic><topic>Fault progression modeling</topic><topic>Feature extraction</topic><topic>Helicopters</topic><topic>Measurement</topic><topic>Petroleum</topic><topic>Predictive models</topic><topic>Safety</topic><toplevel>online_resources</toplevel><creatorcontrib>Bin Zhang</creatorcontrib><creatorcontrib>Sconyers, C</creatorcontrib><creatorcontrib>Orchard, M</creatorcontrib><creatorcontrib>Patrick, R</creatorcontrib><creatorcontrib>Vachtsevanos, G</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Bin Zhang</au><au>Sconyers, C</au><au>Orchard, M</au><au>Patrick, R</au><au>Vachtsevanos, G</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Fault progression modeling: An application to bearing diagnosis and prognosis</atitle><btitle>Proceedings of the 2010 American Control Conference</btitle><stitle>ACC</stitle><date>2010-06</date><risdate>2010</risdate><spage>6993</spage><epage>6998</epage><pages>6993-6998</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9781424474264</isbn><isbn>1424474264</isbn><eisbn>1424474256</eisbn><eisbn>1424474272</eisbn><eisbn>9781424474271</eisbn><eisbn>9781424474257</eisbn><abstract>The successful implementation of fault diagnosis and failure prognosis algorithms to safety critical systems requires the definitions and applications of mathematically rigorous modules. These modules, including data preprocessing, feature extraction, diagnostic and prognostic algorithms, performance metrics definition, and a fault progression model, form an integrated architecture for system health monitoring and management. In these modules, the fault progression model is critical to detection of incipient failures as early as possible with predefined specifications and prediction of the system's remaining useful life accurately and precisely. This paper considers an oil cooler bearing of a helicopter and proposes a methodology for fault detection and failure prognosis, in which data pre-processing, feature extraction and fault progression modeling are discussed in detail. Experimental results are presented to verify the proposed methodology and fault progression model.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2010.5531344</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof Proceedings of the 2010 American Control Conference, 2010, p.6993-6998
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_5531344
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Condition monitoring
Data preprocessing
Data processing
Failure prognosis
Fault detection
Fault diagnosis
Fault progression modeling
Feature extraction
Helicopters
Measurement
Petroleum
Predictive models
Safety
title Fault progression modeling: An application to bearing diagnosis and prognosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T22%3A26%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Fault%20progression%20modeling:%20An%20application%20to%20bearing%20diagnosis%20and%20prognosis&rft.btitle=Proceedings%20of%20the%202010%20American%20Control%20Conference&rft.au=Bin%20Zhang&rft.date=2010-06&rft.spage=6993&rft.epage=6998&rft.pages=6993-6998&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9781424474264&rft.isbn_list=1424474264&rft_id=info:doi/10.1109/ACC.2010.5531344&rft_dat=%3Cieee_6IE%3E5531344%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424474256&rft.eisbn_list=1424474272&rft.eisbn_list=9781424474271&rft.eisbn_list=9781424474257&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5531344&rfr_iscdi=true