Constraint-reduced interior-point optimization for model predictive rotorcraft control

Constraint reduction has been proposed, in the context of linear and quadratic primal-dual interior-point optimization, as an approach for efficiently handling problems in which the number of inequality constraints far exceeds that of decision variables. With such problems, it is typical that only a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: He, Meiyun Y, Kiemb, Mary, Tits, André L, Greenfield, Aaron, Sahasrabudhe, Vineet
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2094
container_issue
container_start_page 2088
container_title
container_volume
creator He, Meiyun Y
Kiemb, Mary
Tits, André L
Greenfield, Aaron
Sahasrabudhe, Vineet
description Constraint reduction has been proposed, in the context of linear and quadratic primal-dual interior-point optimization, as an approach for efficiently handling problems in which the number of inequality constraints far exceeds that of decision variables. With such problems, it is typical that only a small percentage of constraints are active at the solution, the others being, in a sense, redundant. Computing search directions based on a judiciously selected subset of the constraints, updated at each iteration, significantly reduces the work per iteration, while global and local quadratic convergence can be provably retained. In this paper, we apply a constraint-reduced primal-dual interior-point algorithm to a case study of quadratic-programming-based model-predictive rotorcraft control in which, indeed, constraints far outnumber decision variables. A difficulty is that constraint reduction requires the availability, for each optimization problem (to be solved on-line), of an initial strictly feasible point. Indeed, such points may not be readily available in the model-predictive control context. We propose to address this difficulty by substituting a certain auxiliary, ℓ 1 -penalized problem, which has the same solution as the original problem. As a by-product, this technique lends itself nicely to the use of "warm starts" that speed up the solution of the optimization problem. Numerical results, in particular in terms of CPU time needed to solve each quadratic program, show promise that model-predictive control may soon be a practical technique for rotorcraft control.
doi_str_mv 10.1109/ACC.2010.5531302
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5531302</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5531302</ieee_id><sourcerecordid>5531302</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-c76733b604640dfef6faf612460c6e433f988f0f9792c330517b74865e1892fb3</originalsourceid><addsrcrecordid>eNo1kE1LAzEYhOMX2NbeBS_5A6l58_EmOZbFqlDwol7LNptApN0s2Sjor3fBeppnmGEOQ8gt8BUAd_frplkJPjmtJUguzsgclFDKKKHxnMyENJZpi3BBls7Y_wzVJZlxoyQDBHdN5uP4wTk4h3xG3pvcj7W0qa-shO7Th45OHErKhQ15QpqHmo7pp60p9zTmQo-5Cwc6TPXka_oKtOSaiy9trNTnvpZ8uCFXsT2MYXnSBXnbPLw2T2z78vjcrLcsgdGVeYNGyj1yhYp3MUSMbUQQCrnHoKSMztrIozNOeCm5BrM3yqIOYJ2Ie7kgd3-7KYSwG0o6tuV7d_pH_gLrM1X2</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Constraint-reduced interior-point optimization for model predictive rotorcraft control</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>He, Meiyun Y ; Kiemb, Mary ; Tits, André L ; Greenfield, Aaron ; Sahasrabudhe, Vineet</creator><creatorcontrib>He, Meiyun Y ; Kiemb, Mary ; Tits, André L ; Greenfield, Aaron ; Sahasrabudhe, Vineet</creatorcontrib><description>Constraint reduction has been proposed, in the context of linear and quadratic primal-dual interior-point optimization, as an approach for efficiently handling problems in which the number of inequality constraints far exceeds that of decision variables. With such problems, it is typical that only a small percentage of constraints are active at the solution, the others being, in a sense, redundant. Computing search directions based on a judiciously selected subset of the constraints, updated at each iteration, significantly reduces the work per iteration, while global and local quadratic convergence can be provably retained. In this paper, we apply a constraint-reduced primal-dual interior-point algorithm to a case study of quadratic-programming-based model-predictive rotorcraft control in which, indeed, constraints far outnumber decision variables. A difficulty is that constraint reduction requires the availability, for each optimization problem (to be solved on-line), of an initial strictly feasible point. Indeed, such points may not be readily available in the model-predictive control context. We propose to address this difficulty by substituting a certain auxiliary, ℓ 1 -penalized problem, which has the same solution as the original problem. As a by-product, this technique lends itself nicely to the use of "warm starts" that speed up the solution of the optimization problem. Numerical results, in particular in terms of CPU time needed to solve each quadratic program, show promise that model-predictive control may soon be a practical technique for rotorcraft control.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9781424474264</identifier><identifier>ISBN: 1424474264</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424474256</identifier><identifier>EISBN: 1424474272</identifier><identifier>EISBN: 9781424474271</identifier><identifier>EISBN: 9781424474257</identifier><identifier>DOI: 10.1109/ACC.2010.5531302</identifier><language>eng</language><publisher>IEEE</publisher><subject>Aerospace control ; affine scaling ; Aircraft propulsion ; Constraint optimization ; constraint reduction ; Context modeling ; Educational institutions ; exact penalty function ; Helium ; interior-point methods ; model predictive control ; MPC ; Predictive control ; Predictive models ; Process control ; Quadratic programming ; receding horizon control ; RHC ; warm start</subject><ispartof>Proceedings of the 2010 American Control Conference, 2010, p.2088-2094</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5531302$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5531302$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>He, Meiyun Y</creatorcontrib><creatorcontrib>Kiemb, Mary</creatorcontrib><creatorcontrib>Tits, André L</creatorcontrib><creatorcontrib>Greenfield, Aaron</creatorcontrib><creatorcontrib>Sahasrabudhe, Vineet</creatorcontrib><title>Constraint-reduced interior-point optimization for model predictive rotorcraft control</title><title>Proceedings of the 2010 American Control Conference</title><addtitle>ACC</addtitle><description>Constraint reduction has been proposed, in the context of linear and quadratic primal-dual interior-point optimization, as an approach for efficiently handling problems in which the number of inequality constraints far exceeds that of decision variables. With such problems, it is typical that only a small percentage of constraints are active at the solution, the others being, in a sense, redundant. Computing search directions based on a judiciously selected subset of the constraints, updated at each iteration, significantly reduces the work per iteration, while global and local quadratic convergence can be provably retained. In this paper, we apply a constraint-reduced primal-dual interior-point algorithm to a case study of quadratic-programming-based model-predictive rotorcraft control in which, indeed, constraints far outnumber decision variables. A difficulty is that constraint reduction requires the availability, for each optimization problem (to be solved on-line), of an initial strictly feasible point. Indeed, such points may not be readily available in the model-predictive control context. We propose to address this difficulty by substituting a certain auxiliary, ℓ 1 -penalized problem, which has the same solution as the original problem. As a by-product, this technique lends itself nicely to the use of "warm starts" that speed up the solution of the optimization problem. Numerical results, in particular in terms of CPU time needed to solve each quadratic program, show promise that model-predictive control may soon be a practical technique for rotorcraft control.</description><subject>Aerospace control</subject><subject>affine scaling</subject><subject>Aircraft propulsion</subject><subject>Constraint optimization</subject><subject>constraint reduction</subject><subject>Context modeling</subject><subject>Educational institutions</subject><subject>exact penalty function</subject><subject>Helium</subject><subject>interior-point methods</subject><subject>model predictive control</subject><subject>MPC</subject><subject>Predictive control</subject><subject>Predictive models</subject><subject>Process control</subject><subject>Quadratic programming</subject><subject>receding horizon control</subject><subject>RHC</subject><subject>warm start</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9781424474264</isbn><isbn>1424474264</isbn><isbn>1424474256</isbn><isbn>1424474272</isbn><isbn>9781424474271</isbn><isbn>9781424474257</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1kE1LAzEYhOMX2NbeBS_5A6l58_EmOZbFqlDwol7LNptApN0s2Sjor3fBeppnmGEOQ8gt8BUAd_frplkJPjmtJUguzsgclFDKKKHxnMyENJZpi3BBls7Y_wzVJZlxoyQDBHdN5uP4wTk4h3xG3pvcj7W0qa-shO7Th45OHErKhQ15QpqHmo7pp60p9zTmQo-5Cwc6TPXka_oKtOSaiy9trNTnvpZ8uCFXsT2MYXnSBXnbPLw2T2z78vjcrLcsgdGVeYNGyj1yhYp3MUSMbUQQCrnHoKSMztrIozNOeCm5BrM3yqIOYJ2Ie7kgd3-7KYSwG0o6tuV7d_pH_gLrM1X2</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>He, Meiyun Y</creator><creator>Kiemb, Mary</creator><creator>Tits, André L</creator><creator>Greenfield, Aaron</creator><creator>Sahasrabudhe, Vineet</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201006</creationdate><title>Constraint-reduced interior-point optimization for model predictive rotorcraft control</title><author>He, Meiyun Y ; Kiemb, Mary ; Tits, André L ; Greenfield, Aaron ; Sahasrabudhe, Vineet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-c76733b604640dfef6faf612460c6e433f988f0f9792c330517b74865e1892fb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aerospace control</topic><topic>affine scaling</topic><topic>Aircraft propulsion</topic><topic>Constraint optimization</topic><topic>constraint reduction</topic><topic>Context modeling</topic><topic>Educational institutions</topic><topic>exact penalty function</topic><topic>Helium</topic><topic>interior-point methods</topic><topic>model predictive control</topic><topic>MPC</topic><topic>Predictive control</topic><topic>Predictive models</topic><topic>Process control</topic><topic>Quadratic programming</topic><topic>receding horizon control</topic><topic>RHC</topic><topic>warm start</topic><toplevel>online_resources</toplevel><creatorcontrib>He, Meiyun Y</creatorcontrib><creatorcontrib>Kiemb, Mary</creatorcontrib><creatorcontrib>Tits, André L</creatorcontrib><creatorcontrib>Greenfield, Aaron</creatorcontrib><creatorcontrib>Sahasrabudhe, Vineet</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>He, Meiyun Y</au><au>Kiemb, Mary</au><au>Tits, André L</au><au>Greenfield, Aaron</au><au>Sahasrabudhe, Vineet</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Constraint-reduced interior-point optimization for model predictive rotorcraft control</atitle><btitle>Proceedings of the 2010 American Control Conference</btitle><stitle>ACC</stitle><date>2010-06</date><risdate>2010</risdate><spage>2088</spage><epage>2094</epage><pages>2088-2094</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9781424474264</isbn><isbn>1424474264</isbn><eisbn>1424474256</eisbn><eisbn>1424474272</eisbn><eisbn>9781424474271</eisbn><eisbn>9781424474257</eisbn><abstract>Constraint reduction has been proposed, in the context of linear and quadratic primal-dual interior-point optimization, as an approach for efficiently handling problems in which the number of inequality constraints far exceeds that of decision variables. With such problems, it is typical that only a small percentage of constraints are active at the solution, the others being, in a sense, redundant. Computing search directions based on a judiciously selected subset of the constraints, updated at each iteration, significantly reduces the work per iteration, while global and local quadratic convergence can be provably retained. In this paper, we apply a constraint-reduced primal-dual interior-point algorithm to a case study of quadratic-programming-based model-predictive rotorcraft control in which, indeed, constraints far outnumber decision variables. A difficulty is that constraint reduction requires the availability, for each optimization problem (to be solved on-line), of an initial strictly feasible point. Indeed, such points may not be readily available in the model-predictive control context. We propose to address this difficulty by substituting a certain auxiliary, ℓ 1 -penalized problem, which has the same solution as the original problem. As a by-product, this technique lends itself nicely to the use of "warm starts" that speed up the solution of the optimization problem. Numerical results, in particular in terms of CPU time needed to solve each quadratic program, show promise that model-predictive control may soon be a practical technique for rotorcraft control.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2010.5531302</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof Proceedings of the 2010 American Control Conference, 2010, p.2088-2094
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_5531302
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aerospace control
affine scaling
Aircraft propulsion
Constraint optimization
constraint reduction
Context modeling
Educational institutions
exact penalty function
Helium
interior-point methods
model predictive control
MPC
Predictive control
Predictive models
Process control
Quadratic programming
receding horizon control
RHC
warm start
title Constraint-reduced interior-point optimization for model predictive rotorcraft control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T17%3A29%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Constraint-reduced%20interior-point%20optimization%20for%20model%20predictive%20rotorcraft%20control&rft.btitle=Proceedings%20of%20the%202010%20American%20Control%20Conference&rft.au=He,%20Meiyun%20Y&rft.date=2010-06&rft.spage=2088&rft.epage=2094&rft.pages=2088-2094&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9781424474264&rft.isbn_list=1424474264&rft_id=info:doi/10.1109/ACC.2010.5531302&rft_dat=%3Cieee_6IE%3E5531302%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424474256&rft.eisbn_list=1424474272&rft.eisbn_list=9781424474271&rft.eisbn_list=9781424474257&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5531302&rfr_iscdi=true