Stochastic sampling based data association
This paper considers how to determine the origin of a single measurement originating from one of a group of objects moving in close proximity. During the time in which measurements are being received, the dynamics of the various objects are the same except for initial conditions. We present a method...
Gespeichert in:
Hauptverfasser: | , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1391 |
---|---|
container_issue | |
container_start_page | 1386 |
container_title | |
container_volume | |
creator | Travers, M Murphey, T Pao, L |
description | This paper considers how to determine the origin of a single measurement originating from one of a group of objects moving in close proximity. During the time in which measurements are being received, the dynamics of the various objects are the same except for initial conditions. We present a method that uses techniques from filtering theory to represent a distribution using a finite number of parameters. This method, which we call stochastic sampling based data association (SSBDA), is similar to a particle filter but differs in that we use a modified probabilistic data association filter (PDAF) in the propagation of the distribution associated with the object's location. Using the PDAF it is possible to see the effect that the addition of each measurement has on the covariance of the posterior distribution. We discuss how the covariance of the posterior can be used for making decisions on whether or not a particular measurement originated from a predetermined object of interest. |
doi_str_mv | 10.1109/ACC.2010.5530502 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5530502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5530502</ieee_id><sourcerecordid>5530502</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bf3dc975873dd554877abb5dc339113144483023790a6bbec5297e672751e3ea3</originalsourceid><addsrcrecordid>eNo1j0tLAzEUheMLbGv3gptZC1Nzc5PcZFmG-oCCC3Vdbh7VSNspzWz89xasq8Phg8N3hLgFOQOQ_mHedTMlj80YlEaqMzEGrbQmrYw9FyOF5FrjLFyIqSf3z6y-FCNJGluw4K_FuNZvKcF7K0fi_m3o4xfXocSm8na_KbvPJnDNqUk8cMO19rHwUPrdjbha86bm6Skn4uNx8d49t8vXp5duvmwLkBnasMYUPRlHmJIx2hFxCCZFRA-AoLV2KI-uXrINIUejPGVLigxkzIwTcfe3W3LOq_2hbPnwszp9xl9f4ERJ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stochastic sampling based data association</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Travers, M ; Murphey, T ; Pao, L</creator><creatorcontrib>Travers, M ; Murphey, T ; Pao, L</creatorcontrib><description>This paper considers how to determine the origin of a single measurement originating from one of a group of objects moving in close proximity. During the time in which measurements are being received, the dynamics of the various objects are the same except for initial conditions. We present a method that uses techniques from filtering theory to represent a distribution using a finite number of parameters. This method, which we call stochastic sampling based data association (SSBDA), is similar to a particle filter but differs in that we use a modified probabilistic data association filter (PDAF) in the propagation of the distribution associated with the object's location. Using the PDAF it is possible to see the effect that the addition of each measurement has on the covariance of the posterior distribution. We discuss how the covariance of the posterior can be used for making decisions on whether or not a particular measurement originated from a predetermined object of interest.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9781424474264</identifier><identifier>ISBN: 1424474264</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424474256</identifier><identifier>EISBN: 1424474272</identifier><identifier>EISBN: 9781424474271</identifier><identifier>EISBN: 9781424474257</identifier><identifier>DOI: 10.1109/ACC.2010.5530502</identifier><language>eng</language><publisher>IEEE</publisher><subject>Energy measurement ; Filtering algorithms ; Filtering theory ; Particle filters ; Particle measurements ; Sampling methods ; Stochastic processes ; Stochastic systems ; Testing ; Time measurement</subject><ispartof>Proceedings of the 2010 American Control Conference, 2010, p.1386-1391</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5530502$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5530502$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Travers, M</creatorcontrib><creatorcontrib>Murphey, T</creatorcontrib><creatorcontrib>Pao, L</creatorcontrib><title>Stochastic sampling based data association</title><title>Proceedings of the 2010 American Control Conference</title><addtitle>ACC</addtitle><description>This paper considers how to determine the origin of a single measurement originating from one of a group of objects moving in close proximity. During the time in which measurements are being received, the dynamics of the various objects are the same except for initial conditions. We present a method that uses techniques from filtering theory to represent a distribution using a finite number of parameters. This method, which we call stochastic sampling based data association (SSBDA), is similar to a particle filter but differs in that we use a modified probabilistic data association filter (PDAF) in the propagation of the distribution associated with the object's location. Using the PDAF it is possible to see the effect that the addition of each measurement has on the covariance of the posterior distribution. We discuss how the covariance of the posterior can be used for making decisions on whether or not a particular measurement originated from a predetermined object of interest.</description><subject>Energy measurement</subject><subject>Filtering algorithms</subject><subject>Filtering theory</subject><subject>Particle filters</subject><subject>Particle measurements</subject><subject>Sampling methods</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>Testing</subject><subject>Time measurement</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9781424474264</isbn><isbn>1424474264</isbn><isbn>1424474256</isbn><isbn>1424474272</isbn><isbn>9781424474271</isbn><isbn>9781424474257</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j0tLAzEUheMLbGv3gptZC1Nzc5PcZFmG-oCCC3Vdbh7VSNspzWz89xasq8Phg8N3hLgFOQOQ_mHedTMlj80YlEaqMzEGrbQmrYw9FyOF5FrjLFyIqSf3z6y-FCNJGluw4K_FuNZvKcF7K0fi_m3o4xfXocSm8na_KbvPJnDNqUk8cMO19rHwUPrdjbha86bm6Skn4uNx8d49t8vXp5duvmwLkBnasMYUPRlHmJIx2hFxCCZFRA-AoLV2KI-uXrINIUejPGVLigxkzIwTcfe3W3LOq_2hbPnwszp9xl9f4ERJ</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Travers, M</creator><creator>Murphey, T</creator><creator>Pao, L</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201006</creationdate><title>Stochastic sampling based data association</title><author>Travers, M ; Murphey, T ; Pao, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bf3dc975873dd554877abb5dc339113144483023790a6bbec5297e672751e3ea3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Energy measurement</topic><topic>Filtering algorithms</topic><topic>Filtering theory</topic><topic>Particle filters</topic><topic>Particle measurements</topic><topic>Sampling methods</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>Testing</topic><topic>Time measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Travers, M</creatorcontrib><creatorcontrib>Murphey, T</creatorcontrib><creatorcontrib>Pao, L</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Travers, M</au><au>Murphey, T</au><au>Pao, L</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stochastic sampling based data association</atitle><btitle>Proceedings of the 2010 American Control Conference</btitle><stitle>ACC</stitle><date>2010-06</date><risdate>2010</risdate><spage>1386</spage><epage>1391</epage><pages>1386-1391</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9781424474264</isbn><isbn>1424474264</isbn><eisbn>1424474256</eisbn><eisbn>1424474272</eisbn><eisbn>9781424474271</eisbn><eisbn>9781424474257</eisbn><abstract>This paper considers how to determine the origin of a single measurement originating from one of a group of objects moving in close proximity. During the time in which measurements are being received, the dynamics of the various objects are the same except for initial conditions. We present a method that uses techniques from filtering theory to represent a distribution using a finite number of parameters. This method, which we call stochastic sampling based data association (SSBDA), is similar to a particle filter but differs in that we use a modified probabilistic data association filter (PDAF) in the propagation of the distribution associated with the object's location. Using the PDAF it is possible to see the effect that the addition of each measurement has on the covariance of the posterior distribution. We discuss how the covariance of the posterior can be used for making decisions on whether or not a particular measurement originated from a predetermined object of interest.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2010.5530502</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0743-1619 |
ispartof | Proceedings of the 2010 American Control Conference, 2010, p.1386-1391 |
issn | 0743-1619 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_5530502 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Energy measurement Filtering algorithms Filtering theory Particle filters Particle measurements Sampling methods Stochastic processes Stochastic systems Testing Time measurement |
title | Stochastic sampling based data association |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stochastic%20sampling%20based%20data%20association&rft.btitle=Proceedings%20of%20the%202010%20American%20Control%20Conference&rft.au=Travers,%20M&rft.date=2010-06&rft.spage=1386&rft.epage=1391&rft.pages=1386-1391&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9781424474264&rft.isbn_list=1424474264&rft_id=info:doi/10.1109/ACC.2010.5530502&rft_dat=%3Cieee_6IE%3E5530502%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424474256&rft.eisbn_list=1424474272&rft.eisbn_list=9781424474271&rft.eisbn_list=9781424474257&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5530502&rfr_iscdi=true |