Stochastic sampling based data association

This paper considers how to determine the origin of a single measurement originating from one of a group of objects moving in close proximity. During the time in which measurements are being received, the dynamics of the various objects are the same except for initial conditions. We present a method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Travers, M, Murphey, T, Pao, L
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1391
container_issue
container_start_page 1386
container_title
container_volume
creator Travers, M
Murphey, T
Pao, L
description This paper considers how to determine the origin of a single measurement originating from one of a group of objects moving in close proximity. During the time in which measurements are being received, the dynamics of the various objects are the same except for initial conditions. We present a method that uses techniques from filtering theory to represent a distribution using a finite number of parameters. This method, which we call stochastic sampling based data association (SSBDA), is similar to a particle filter but differs in that we use a modified probabilistic data association filter (PDAF) in the propagation of the distribution associated with the object's location. Using the PDAF it is possible to see the effect that the addition of each measurement has on the covariance of the posterior distribution. We discuss how the covariance of the posterior can be used for making decisions on whether or not a particular measurement originated from a predetermined object of interest.
doi_str_mv 10.1109/ACC.2010.5530502
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5530502</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5530502</ieee_id><sourcerecordid>5530502</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-bf3dc975873dd554877abb5dc339113144483023790a6bbec5297e672751e3ea3</originalsourceid><addsrcrecordid>eNo1j0tLAzEUheMLbGv3gptZC1Nzc5PcZFmG-oCCC3Vdbh7VSNspzWz89xasq8Phg8N3hLgFOQOQ_mHedTMlj80YlEaqMzEGrbQmrYw9FyOF5FrjLFyIqSf3z6y-FCNJGluw4K_FuNZvKcF7K0fi_m3o4xfXocSm8na_KbvPJnDNqUk8cMO19rHwUPrdjbha86bm6Skn4uNx8d49t8vXp5duvmwLkBnasMYUPRlHmJIx2hFxCCZFRA-AoLV2KI-uXrINIUejPGVLigxkzIwTcfe3W3LOq_2hbPnwszp9xl9f4ERJ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Stochastic sampling based data association</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Travers, M ; Murphey, T ; Pao, L</creator><creatorcontrib>Travers, M ; Murphey, T ; Pao, L</creatorcontrib><description>This paper considers how to determine the origin of a single measurement originating from one of a group of objects moving in close proximity. During the time in which measurements are being received, the dynamics of the various objects are the same except for initial conditions. We present a method that uses techniques from filtering theory to represent a distribution using a finite number of parameters. This method, which we call stochastic sampling based data association (SSBDA), is similar to a particle filter but differs in that we use a modified probabilistic data association filter (PDAF) in the propagation of the distribution associated with the object's location. Using the PDAF it is possible to see the effect that the addition of each measurement has on the covariance of the posterior distribution. We discuss how the covariance of the posterior can be used for making decisions on whether or not a particular measurement originated from a predetermined object of interest.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9781424474264</identifier><identifier>ISBN: 1424474264</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424474256</identifier><identifier>EISBN: 1424474272</identifier><identifier>EISBN: 9781424474271</identifier><identifier>EISBN: 9781424474257</identifier><identifier>DOI: 10.1109/ACC.2010.5530502</identifier><language>eng</language><publisher>IEEE</publisher><subject>Energy measurement ; Filtering algorithms ; Filtering theory ; Particle filters ; Particle measurements ; Sampling methods ; Stochastic processes ; Stochastic systems ; Testing ; Time measurement</subject><ispartof>Proceedings of the 2010 American Control Conference, 2010, p.1386-1391</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5530502$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5530502$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Travers, M</creatorcontrib><creatorcontrib>Murphey, T</creatorcontrib><creatorcontrib>Pao, L</creatorcontrib><title>Stochastic sampling based data association</title><title>Proceedings of the 2010 American Control Conference</title><addtitle>ACC</addtitle><description>This paper considers how to determine the origin of a single measurement originating from one of a group of objects moving in close proximity. During the time in which measurements are being received, the dynamics of the various objects are the same except for initial conditions. We present a method that uses techniques from filtering theory to represent a distribution using a finite number of parameters. This method, which we call stochastic sampling based data association (SSBDA), is similar to a particle filter but differs in that we use a modified probabilistic data association filter (PDAF) in the propagation of the distribution associated with the object's location. Using the PDAF it is possible to see the effect that the addition of each measurement has on the covariance of the posterior distribution. We discuss how the covariance of the posterior can be used for making decisions on whether or not a particular measurement originated from a predetermined object of interest.</description><subject>Energy measurement</subject><subject>Filtering algorithms</subject><subject>Filtering theory</subject><subject>Particle filters</subject><subject>Particle measurements</subject><subject>Sampling methods</subject><subject>Stochastic processes</subject><subject>Stochastic systems</subject><subject>Testing</subject><subject>Time measurement</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9781424474264</isbn><isbn>1424474264</isbn><isbn>1424474256</isbn><isbn>1424474272</isbn><isbn>9781424474271</isbn><isbn>9781424474257</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j0tLAzEUheMLbGv3gptZC1Nzc5PcZFmG-oCCC3Vdbh7VSNspzWz89xasq8Phg8N3hLgFOQOQ_mHedTMlj80YlEaqMzEGrbQmrYw9FyOF5FrjLFyIqSf3z6y-FCNJGluw4K_FuNZvKcF7K0fi_m3o4xfXocSm8na_KbvPJnDNqUk8cMO19rHwUPrdjbha86bm6Skn4uNx8d49t8vXp5duvmwLkBnasMYUPRlHmJIx2hFxCCZFRA-AoLV2KI-uXrINIUejPGVLigxkzIwTcfe3W3LOq_2hbPnwszp9xl9f4ERJ</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Travers, M</creator><creator>Murphey, T</creator><creator>Pao, L</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201006</creationdate><title>Stochastic sampling based data association</title><author>Travers, M ; Murphey, T ; Pao, L</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-bf3dc975873dd554877abb5dc339113144483023790a6bbec5297e672751e3ea3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Energy measurement</topic><topic>Filtering algorithms</topic><topic>Filtering theory</topic><topic>Particle filters</topic><topic>Particle measurements</topic><topic>Sampling methods</topic><topic>Stochastic processes</topic><topic>Stochastic systems</topic><topic>Testing</topic><topic>Time measurement</topic><toplevel>online_resources</toplevel><creatorcontrib>Travers, M</creatorcontrib><creatorcontrib>Murphey, T</creatorcontrib><creatorcontrib>Pao, L</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Travers, M</au><au>Murphey, T</au><au>Pao, L</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Stochastic sampling based data association</atitle><btitle>Proceedings of the 2010 American Control Conference</btitle><stitle>ACC</stitle><date>2010-06</date><risdate>2010</risdate><spage>1386</spage><epage>1391</epage><pages>1386-1391</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9781424474264</isbn><isbn>1424474264</isbn><eisbn>1424474256</eisbn><eisbn>1424474272</eisbn><eisbn>9781424474271</eisbn><eisbn>9781424474257</eisbn><abstract>This paper considers how to determine the origin of a single measurement originating from one of a group of objects moving in close proximity. During the time in which measurements are being received, the dynamics of the various objects are the same except for initial conditions. We present a method that uses techniques from filtering theory to represent a distribution using a finite number of parameters. This method, which we call stochastic sampling based data association (SSBDA), is similar to a particle filter but differs in that we use a modified probabilistic data association filter (PDAF) in the propagation of the distribution associated with the object's location. Using the PDAF it is possible to see the effect that the addition of each measurement has on the covariance of the posterior distribution. We discuss how the covariance of the posterior can be used for making decisions on whether or not a particular measurement originated from a predetermined object of interest.</abstract><pub>IEEE</pub><doi>10.1109/ACC.2010.5530502</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof Proceedings of the 2010 American Control Conference, 2010, p.1386-1391
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_5530502
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Energy measurement
Filtering algorithms
Filtering theory
Particle filters
Particle measurements
Sampling methods
Stochastic processes
Stochastic systems
Testing
Time measurement
title Stochastic sampling based data association
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T21%3A32%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Stochastic%20sampling%20based%20data%20association&rft.btitle=Proceedings%20of%20the%202010%20American%20Control%20Conference&rft.au=Travers,%20M&rft.date=2010-06&rft.spage=1386&rft.epage=1391&rft.pages=1386-1391&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9781424474264&rft.isbn_list=1424474264&rft_id=info:doi/10.1109/ACC.2010.5530502&rft_dat=%3Cieee_6IE%3E5530502%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424474256&rft.eisbn_list=1424474272&rft.eisbn_list=9781424474271&rft.eisbn_list=9781424474257&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5530502&rfr_iscdi=true