Modeling-error robustness of a viral-load preconditioning strategy for HIV treatment switching
In previous work, we have developed optimal-control based approaches that seek to minimize the risk of subsequent virological failure by "pre-conditioning" the viral load during therapy switches. In this paper, we use Monte-Carlo methods to evaluate the sensitivity of an open-loop implemen...
Gespeichert in:
Veröffentlicht in: | Proceedings of the 2010 American Control Conference 2010-01, Vol.2010, p.5155-5160 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5160 |
---|---|
container_issue | |
container_start_page | 5155 |
container_title | Proceedings of the 2010 American Control Conference |
container_volume | 2010 |
creator | Rutao Luo Piovoso, Michael J Zurakowski, Ryan |
description | In previous work, we have developed optimal-control based approaches that seek to minimize the risk of subsequent virological failure by "pre-conditioning" the viral load during therapy switches. In this paper, we use Monte-Carlo methods to evaluate the sensitivity of an open-loop implementation of these approaches to modeling errors. To account for hidden parameter dependencies, we use parameter distributions obtained from the convergence of Bayesian parameter estimation techniques applied to sets of clinical data obtained during serial therapy interruptions as the distribution from which the Monte-Carlo method samples. |
doi_str_mv | 10.1109/ACC.2010.5530483 |
format | Article |
fullrecord | <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_5530483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5530483</ieee_id><sourcerecordid>1826600975</sourcerecordid><originalsourceid>FETCH-LOGICAL-i328t-54311e40fa0c4e9a1566010b386037c74d6c0539d84716646efcefb5b720a17a3</originalsourceid><addsrcrecordid>eNpVUUtPGzEQNgVUksAdCanykctSvx-XSlHESwL10nJk5d2dTYw262A7VPz7WiJE7Wk0-h7zzQxC55RcUUrs9_liccVI6aTkRBh-gKZUMCG0YFJ9QRPGtamkUfQQnVltPjEljtCEaMErqqg9QdOUXgih1iryFZ0wYaWwmk3Q82PoYPDjsoIYQ8QxNNuUR0gJhx47_OajG6ohuA5vIrRh7Hz2YSwCnHJ0GZbvuC-6u_snnCO4vIYx4_TH53ZVSKfouHdDgrNdnaHfN9e_FnfVw8_b-8X8ofKcmVxJwSkFQXpHWgHWUalU2bnhRhGuWy061RLJbWeEpkoJBX0LfSMbzYij2vEZ-vHhu9k2a-jaEqLkrjfRr118r4Pz9f_I6Ff1MrzVgiiqpSkGlzuDGF63kHK99qmFYXAjhG2qqWElErFaFuq3f2fth3wetRAuPggeAPbw7n_8L2ShiL0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826600975</pqid></control><display><type>article</type><title>Modeling-error robustness of a viral-load preconditioning strategy for HIV treatment switching</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rutao Luo ; Piovoso, Michael J ; Zurakowski, Ryan</creator><creatorcontrib>Rutao Luo ; Piovoso, Michael J ; Zurakowski, Ryan</creatorcontrib><description>In previous work, we have developed optimal-control based approaches that seek to minimize the risk of subsequent virological failure by "pre-conditioning" the viral load during therapy switches. In this paper, we use Monte-Carlo methods to evaluate the sensitivity of an open-loop implementation of these approaches to modeling errors. To account for hidden parameter dependencies, we use parameter distributions obtained from the convergence of Bayesian parameter estimation techniques applied to sets of clinical data obtained during serial therapy interruptions as the distribution from which the Monte-Carlo method samples.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9781424474264</identifier><identifier>ISBN: 1424474264</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424474256</identifier><identifier>EISBN: 1424474272</identifier><identifier>EISBN: 9781424474271</identifier><identifier>EISBN: 9781424474257</identifier><identifier>DOI: 10.1109/ACC.2010.5530483</identifier><identifier>PMID: 24954972</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aerospace control ; Control systems ; Human immunodeficiency virus ; Mechanical factors ; Open loop systems ; Robust control ; Robust stability ; Robustness ; State estimation ; Supervisory control</subject><ispartof>Proceedings of the 2010 American Control Conference, 2010-01, Vol.2010, p.5155-5160</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5530483$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,881,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5530483$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24954972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rutao Luo</creatorcontrib><creatorcontrib>Piovoso, Michael J</creatorcontrib><creatorcontrib>Zurakowski, Ryan</creatorcontrib><title>Modeling-error robustness of a viral-load preconditioning strategy for HIV treatment switching</title><title>Proceedings of the 2010 American Control Conference</title><addtitle>ACC</addtitle><addtitle>Proc Am Control Conf</addtitle><description>In previous work, we have developed optimal-control based approaches that seek to minimize the risk of subsequent virological failure by "pre-conditioning" the viral load during therapy switches. In this paper, we use Monte-Carlo methods to evaluate the sensitivity of an open-loop implementation of these approaches to modeling errors. To account for hidden parameter dependencies, we use parameter distributions obtained from the convergence of Bayesian parameter estimation techniques applied to sets of clinical data obtained during serial therapy interruptions as the distribution from which the Monte-Carlo method samples.</description><subject>Aerospace control</subject><subject>Control systems</subject><subject>Human immunodeficiency virus</subject><subject>Mechanical factors</subject><subject>Open loop systems</subject><subject>Robust control</subject><subject>Robust stability</subject><subject>Robustness</subject><subject>State estimation</subject><subject>Supervisory control</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9781424474264</isbn><isbn>1424474264</isbn><isbn>1424474256</isbn><isbn>1424474272</isbn><isbn>9781424474271</isbn><isbn>9781424474257</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUUtPGzEQNgVUksAdCanykctSvx-XSlHESwL10nJk5d2dTYw262A7VPz7WiJE7Wk0-h7zzQxC55RcUUrs9_liccVI6aTkRBh-gKZUMCG0YFJ9QRPGtamkUfQQnVltPjEljtCEaMErqqg9QdOUXgih1iryFZ0wYaWwmk3Q82PoYPDjsoIYQ8QxNNuUR0gJhx47_OajG6ohuA5vIrRh7Hz2YSwCnHJ0GZbvuC-6u_snnCO4vIYx4_TH53ZVSKfouHdDgrNdnaHfN9e_FnfVw8_b-8X8ofKcmVxJwSkFQXpHWgHWUalU2bnhRhGuWy061RLJbWeEpkoJBX0LfSMbzYij2vEZ-vHhu9k2a-jaEqLkrjfRr118r4Pz9f_I6Ff1MrzVgiiqpSkGlzuDGF63kHK99qmFYXAjhG2qqWElErFaFuq3f2fth3wetRAuPggeAPbw7n_8L2ShiL0</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Rutao Luo</creator><creator>Piovoso, Michael J</creator><creator>Zurakowski, Ryan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100101</creationdate><title>Modeling-error robustness of a viral-load preconditioning strategy for HIV treatment switching</title><author>Rutao Luo ; Piovoso, Michael J ; Zurakowski, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i328t-54311e40fa0c4e9a1566010b386037c74d6c0539d84716646efcefb5b720a17a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aerospace control</topic><topic>Control systems</topic><topic>Human immunodeficiency virus</topic><topic>Mechanical factors</topic><topic>Open loop systems</topic><topic>Robust control</topic><topic>Robust stability</topic><topic>Robustness</topic><topic>State estimation</topic><topic>Supervisory control</topic><toplevel>online_resources</toplevel><creatorcontrib>Rutao Luo</creatorcontrib><creatorcontrib>Piovoso, Michael J</creatorcontrib><creatorcontrib>Zurakowski, Ryan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the 2010 American Control Conference</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rutao Luo</au><au>Piovoso, Michael J</au><au>Zurakowski, Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling-error robustness of a viral-load preconditioning strategy for HIV treatment switching</atitle><jtitle>Proceedings of the 2010 American Control Conference</jtitle><stitle>ACC</stitle><addtitle>Proc Am Control Conf</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><spage>5155</spage><epage>5160</epage><pages>5155-5160</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9781424474264</isbn><isbn>1424474264</isbn><eisbn>1424474256</eisbn><eisbn>1424474272</eisbn><eisbn>9781424474271</eisbn><eisbn>9781424474257</eisbn><abstract>In previous work, we have developed optimal-control based approaches that seek to minimize the risk of subsequent virological failure by "pre-conditioning" the viral load during therapy switches. In this paper, we use Monte-Carlo methods to evaluate the sensitivity of an open-loop implementation of these approaches to modeling errors. To account for hidden parameter dependencies, we use parameter distributions obtained from the convergence of Bayesian parameter estimation techniques applied to sets of clinical data obtained during serial therapy interruptions as the distribution from which the Monte-Carlo method samples.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24954972</pmid><doi>10.1109/ACC.2010.5530483</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0743-1619 |
ispartof | Proceedings of the 2010 American Control Conference, 2010-01, Vol.2010, p.5155-5160 |
issn | 0743-1619 2378-5861 |
language | eng |
recordid | cdi_ieee_primary_5530483 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Aerospace control Control systems Human immunodeficiency virus Mechanical factors Open loop systems Robust control Robust stability Robustness State estimation Supervisory control |
title | Modeling-error robustness of a viral-load preconditioning strategy for HIV treatment switching |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling-error%20robustness%20of%20a%20viral-load%20preconditioning%20strategy%20for%20HIV%20treatment%20switching&rft.jtitle=Proceedings%20of%20the%202010%20American%20Control%20Conference&rft.au=Rutao%20Luo&rft.date=2010-01-01&rft.volume=2010&rft.spage=5155&rft.epage=5160&rft.pages=5155-5160&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9781424474264&rft.isbn_list=1424474264&rft_id=info:doi/10.1109/ACC.2010.5530483&rft_dat=%3Cproquest_6IE%3E1826600975%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424474256&rft.eisbn_list=1424474272&rft.eisbn_list=9781424474271&rft.eisbn_list=9781424474257&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826600975&rft_id=info:pmid/24954972&rft_ieee_id=5530483&rfr_iscdi=true |