Modeling-error robustness of a viral-load preconditioning strategy for HIV treatment switching

In previous work, we have developed optimal-control based approaches that seek to minimize the risk of subsequent virological failure by "pre-conditioning" the viral load during therapy switches. In this paper, we use Monte-Carlo methods to evaluate the sensitivity of an open-loop implemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the 2010 American Control Conference 2010-01, Vol.2010, p.5155-5160
Hauptverfasser: Rutao Luo, Piovoso, Michael J, Zurakowski, Ryan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5160
container_issue
container_start_page 5155
container_title Proceedings of the 2010 American Control Conference
container_volume 2010
creator Rutao Luo
Piovoso, Michael J
Zurakowski, Ryan
description In previous work, we have developed optimal-control based approaches that seek to minimize the risk of subsequent virological failure by "pre-conditioning" the viral load during therapy switches. In this paper, we use Monte-Carlo methods to evaluate the sensitivity of an open-loop implementation of these approaches to modeling errors. To account for hidden parameter dependencies, we use parameter distributions obtained from the convergence of Bayesian parameter estimation techniques applied to sets of clinical data obtained during serial therapy interruptions as the distribution from which the Monte-Carlo method samples.
doi_str_mv 10.1109/ACC.2010.5530483
format Article
fullrecord <record><control><sourceid>proquest_6IE</sourceid><recordid>TN_cdi_ieee_primary_5530483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5530483</ieee_id><sourcerecordid>1826600975</sourcerecordid><originalsourceid>FETCH-LOGICAL-i328t-54311e40fa0c4e9a1566010b386037c74d6c0539d84716646efcefb5b720a17a3</originalsourceid><addsrcrecordid>eNpVUUtPGzEQNgVUksAdCanykctSvx-XSlHESwL10nJk5d2dTYw262A7VPz7WiJE7Wk0-h7zzQxC55RcUUrs9_liccVI6aTkRBh-gKZUMCG0YFJ9QRPGtamkUfQQnVltPjEljtCEaMErqqg9QdOUXgih1iryFZ0wYaWwmk3Q82PoYPDjsoIYQ8QxNNuUR0gJhx47_OajG6ohuA5vIrRh7Hz2YSwCnHJ0GZbvuC-6u_snnCO4vIYx4_TH53ZVSKfouHdDgrNdnaHfN9e_FnfVw8_b-8X8ofKcmVxJwSkFQXpHWgHWUalU2bnhRhGuWy061RLJbWeEpkoJBX0LfSMbzYij2vEZ-vHhu9k2a-jaEqLkrjfRr118r4Pz9f_I6Ff1MrzVgiiqpSkGlzuDGF63kHK99qmFYXAjhG2qqWElErFaFuq3f2fth3wetRAuPggeAPbw7n_8L2ShiL0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1826600975</pqid></control><display><type>article</type><title>Modeling-error robustness of a viral-load preconditioning strategy for HIV treatment switching</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Rutao Luo ; Piovoso, Michael J ; Zurakowski, Ryan</creator><creatorcontrib>Rutao Luo ; Piovoso, Michael J ; Zurakowski, Ryan</creatorcontrib><description>In previous work, we have developed optimal-control based approaches that seek to minimize the risk of subsequent virological failure by "pre-conditioning" the viral load during therapy switches. In this paper, we use Monte-Carlo methods to evaluate the sensitivity of an open-loop implementation of these approaches to modeling errors. To account for hidden parameter dependencies, we use parameter distributions obtained from the convergence of Bayesian parameter estimation techniques applied to sets of clinical data obtained during serial therapy interruptions as the distribution from which the Monte-Carlo method samples.</description><identifier>ISSN: 0743-1619</identifier><identifier>ISBN: 9781424474264</identifier><identifier>ISBN: 1424474264</identifier><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1424474256</identifier><identifier>EISBN: 1424474272</identifier><identifier>EISBN: 9781424474271</identifier><identifier>EISBN: 9781424474257</identifier><identifier>DOI: 10.1109/ACC.2010.5530483</identifier><identifier>PMID: 24954972</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Aerospace control ; Control systems ; Human immunodeficiency virus ; Mechanical factors ; Open loop systems ; Robust control ; Robust stability ; Robustness ; State estimation ; Supervisory control</subject><ispartof>Proceedings of the 2010 American Control Conference, 2010-01, Vol.2010, p.5155-5160</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5530483$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,881,2051,27904,54899</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5530483$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24954972$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rutao Luo</creatorcontrib><creatorcontrib>Piovoso, Michael J</creatorcontrib><creatorcontrib>Zurakowski, Ryan</creatorcontrib><title>Modeling-error robustness of a viral-load preconditioning strategy for HIV treatment switching</title><title>Proceedings of the 2010 American Control Conference</title><addtitle>ACC</addtitle><addtitle>Proc Am Control Conf</addtitle><description>In previous work, we have developed optimal-control based approaches that seek to minimize the risk of subsequent virological failure by "pre-conditioning" the viral load during therapy switches. In this paper, we use Monte-Carlo methods to evaluate the sensitivity of an open-loop implementation of these approaches to modeling errors. To account for hidden parameter dependencies, we use parameter distributions obtained from the convergence of Bayesian parameter estimation techniques applied to sets of clinical data obtained during serial therapy interruptions as the distribution from which the Monte-Carlo method samples.</description><subject>Aerospace control</subject><subject>Control systems</subject><subject>Human immunodeficiency virus</subject><subject>Mechanical factors</subject><subject>Open loop systems</subject><subject>Robust control</subject><subject>Robust stability</subject><subject>Robustness</subject><subject>State estimation</subject><subject>Supervisory control</subject><issn>0743-1619</issn><issn>2378-5861</issn><isbn>9781424474264</isbn><isbn>1424474264</isbn><isbn>1424474256</isbn><isbn>1424474272</isbn><isbn>9781424474271</isbn><isbn>9781424474257</isbn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVUUtPGzEQNgVUksAdCanykctSvx-XSlHESwL10nJk5d2dTYw262A7VPz7WiJE7Wk0-h7zzQxC55RcUUrs9_liccVI6aTkRBh-gKZUMCG0YFJ9QRPGtamkUfQQnVltPjEljtCEaMErqqg9QdOUXgih1iryFZ0wYaWwmk3Q82PoYPDjsoIYQ8QxNNuUR0gJhx47_OajG6ohuA5vIrRh7Hz2YSwCnHJ0GZbvuC-6u_snnCO4vIYx4_TH53ZVSKfouHdDgrNdnaHfN9e_FnfVw8_b-8X8ofKcmVxJwSkFQXpHWgHWUalU2bnhRhGuWy061RLJbWeEpkoJBX0LfSMbzYij2vEZ-vHhu9k2a-jaEqLkrjfRr118r4Pz9f_I6Ff1MrzVgiiqpSkGlzuDGF63kHK99qmFYXAjhG2qqWElErFaFuq3f2fth3wetRAuPggeAPbw7n_8L2ShiL0</recordid><startdate>20100101</startdate><enddate>20100101</enddate><creator>Rutao Luo</creator><creator>Piovoso, Michael J</creator><creator>Zurakowski, Ryan</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope><scope>NPM</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20100101</creationdate><title>Modeling-error robustness of a viral-load preconditioning strategy for HIV treatment switching</title><author>Rutao Luo ; Piovoso, Michael J ; Zurakowski, Ryan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i328t-54311e40fa0c4e9a1566010b386037c74d6c0539d84716646efcefb5b720a17a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Aerospace control</topic><topic>Control systems</topic><topic>Human immunodeficiency virus</topic><topic>Mechanical factors</topic><topic>Open loop systems</topic><topic>Robust control</topic><topic>Robust stability</topic><topic>Robustness</topic><topic>State estimation</topic><topic>Supervisory control</topic><toplevel>online_resources</toplevel><creatorcontrib>Rutao Luo</creatorcontrib><creatorcontrib>Piovoso, Michael J</creatorcontrib><creatorcontrib>Zurakowski, Ryan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the 2010 American Control Conference</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rutao Luo</au><au>Piovoso, Michael J</au><au>Zurakowski, Ryan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling-error robustness of a viral-load preconditioning strategy for HIV treatment switching</atitle><jtitle>Proceedings of the 2010 American Control Conference</jtitle><stitle>ACC</stitle><addtitle>Proc Am Control Conf</addtitle><date>2010-01-01</date><risdate>2010</risdate><volume>2010</volume><spage>5155</spage><epage>5160</epage><pages>5155-5160</pages><issn>0743-1619</issn><eissn>2378-5861</eissn><isbn>9781424474264</isbn><isbn>1424474264</isbn><eisbn>1424474256</eisbn><eisbn>1424474272</eisbn><eisbn>9781424474271</eisbn><eisbn>9781424474257</eisbn><abstract>In previous work, we have developed optimal-control based approaches that seek to minimize the risk of subsequent virological failure by "pre-conditioning" the viral load during therapy switches. In this paper, we use Monte-Carlo methods to evaluate the sensitivity of an open-loop implementation of these approaches to modeling errors. To account for hidden parameter dependencies, we use parameter distributions obtained from the convergence of Bayesian parameter estimation techniques applied to sets of clinical data obtained during serial therapy interruptions as the distribution from which the Monte-Carlo method samples.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>24954972</pmid><doi>10.1109/ACC.2010.5530483</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0743-1619
ispartof Proceedings of the 2010 American Control Conference, 2010-01, Vol.2010, p.5155-5160
issn 0743-1619
2378-5861
language eng
recordid cdi_ieee_primary_5530483
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Aerospace control
Control systems
Human immunodeficiency virus
Mechanical factors
Open loop systems
Robust control
Robust stability
Robustness
State estimation
Supervisory control
title Modeling-error robustness of a viral-load preconditioning strategy for HIV treatment switching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T14%3A55%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling-error%20robustness%20of%20a%20viral-load%20preconditioning%20strategy%20for%20HIV%20treatment%20switching&rft.jtitle=Proceedings%20of%20the%202010%20American%20Control%20Conference&rft.au=Rutao%20Luo&rft.date=2010-01-01&rft.volume=2010&rft.spage=5155&rft.epage=5160&rft.pages=5155-5160&rft.issn=0743-1619&rft.eissn=2378-5861&rft.isbn=9781424474264&rft.isbn_list=1424474264&rft_id=info:doi/10.1109/ACC.2010.5530483&rft_dat=%3Cproquest_6IE%3E1826600975%3C/proquest_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424474256&rft.eisbn_list=1424474272&rft.eisbn_list=9781424474271&rft.eisbn_list=9781424474257&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1826600975&rft_id=info:pmid/24954972&rft_ieee_id=5530483&rfr_iscdi=true