Parallel hierarchical cross entropy optimization for on-chip decap budgeting

Decoupling capacitor (decap) placement has been widely adopted as an effective way to suppress dynamic power supply noise. Traditional decap budgeting algorithms usually explore the sensitivity-based nonlinear optimizations or conjugate gradient methods, which can be prohibitively expensive for larg...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Zhao, Xueqian, Guo, Yonghe, Feng, Zhuo, Hu, Shiyan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 848
container_issue
container_start_page 843
container_title
container_volume
creator Zhao, Xueqian
Guo, Yonghe
Feng, Zhuo
Hu, Shiyan
description Decoupling capacitor (decap) placement has been widely adopted as an effective way to suppress dynamic power supply noise. Traditional decap budgeting algorithms usually explore the sensitivity-based nonlinear optimizations or conjugate gradient methods, which can be prohibitively expensive for large-scale decap budgeting problems. We present a hierarchical cross entropy (CE) optimization technique for solving the decap budgeting problem. CE is an advanced optimization framework which explores the power of rare-event probability theory and importance sampling. To achieve high efficiency, a sensitivity-guided cross entropy (SCE) algorithm is proposed which integrates CE with a partitioning-based sampling strategy to effectively reduce the dimensionality in solving the large scale decap budgeting problems. Extensive experiments on industrial power grid benchmarks show that the proposed SCE method converges 2X faster than the prior methods and 10X faster than the standard CE method, while gaining up to 25% improvement on power grid supply noise. Importantly, the proposed SCE algorithm is parallel-friendly since the simulation samples of each SCE iteration can be independently obtained in parallel. We obtain up to 1.9X speedup when running the SCE decap budgeting algorithm on a dual-core-dual-GPU system.
doi_str_mv 10.1145/1837274.1837485
format Conference Proceeding
fullrecord <record><control><sourceid>acm_6IE</sourceid><recordid>TN_cdi_ieee_primary_5522930</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5522930</ieee_id><sourcerecordid>acm_books_10_1145_1837274_1837485</sourcerecordid><originalsourceid>FETCH-LOGICAL-a247t-3b6177fe64e8ee17436dbf535356964cc9f68f41dc32b9c8c85f15b3f6eb5a513</originalsourceid><addsrcrecordid>eNqNkL1PwzAUxI2gElXpzMDikSXF33ZGVPElVYIBJDbLdp5bQ1pHThjgrydVOzGhN5yefnc3HEKXlCwoFfKGGq6ZFou9CiNP0LzWZgSEE0KYPP3zn6Ep0dxUlJD3CZoaWSkhaibO0bzvP0YLpYxILaZo9eKKa1to8SZBcSVsUnAtDiX3PYbdUHL3jXM3pG36cUPKOxxzwXlXjcYONxBch_1Xs4Yh7dYXaBJd28P8qDP0dn_3unysVs8PT8vbVeWY0EPFvaJaR1ACDADVgqvGR8nHU7USIdRRmShoEzjzdTDByEil51GBl05SPkNXh94EALYraevKt5WSsZqTkS4O1IWt9Tl_9pYSu5_RHme0xxmtLwniGLj-Z4D_AkhTbAg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Parallel hierarchical cross entropy optimization for on-chip decap budgeting</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Zhao, Xueqian ; Guo, Yonghe ; Feng, Zhuo ; Hu, Shiyan</creator><creatorcontrib>Zhao, Xueqian ; Guo, Yonghe ; Feng, Zhuo ; Hu, Shiyan</creatorcontrib><description>Decoupling capacitor (decap) placement has been widely adopted as an effective way to suppress dynamic power supply noise. Traditional decap budgeting algorithms usually explore the sensitivity-based nonlinear optimizations or conjugate gradient methods, which can be prohibitively expensive for large-scale decap budgeting problems. We present a hierarchical cross entropy (CE) optimization technique for solving the decap budgeting problem. CE is an advanced optimization framework which explores the power of rare-event probability theory and importance sampling. To achieve high efficiency, a sensitivity-guided cross entropy (SCE) algorithm is proposed which integrates CE with a partitioning-based sampling strategy to effectively reduce the dimensionality in solving the large scale decap budgeting problems. Extensive experiments on industrial power grid benchmarks show that the proposed SCE method converges 2X faster than the prior methods and 10X faster than the standard CE method, while gaining up to 25% improvement on power grid supply noise. Importantly, the proposed SCE algorithm is parallel-friendly since the simulation samples of each SCE iteration can be independently obtained in parallel. We obtain up to 1.9X speedup when running the SCE decap budgeting algorithm on a dual-core-dual-GPU system.</description><identifier>ISSN: 0738-100X</identifier><identifier>ISBN: 9781450300025</identifier><identifier>ISBN: 1450300022</identifier><identifier>ISBN: 9781424466771</identifier><identifier>ISBN: 1424466776</identifier><identifier>EISBN: 9781450300025</identifier><identifier>EISBN: 1450300022</identifier><identifier>DOI: 10.1145/1837274.1837485</identifier><identifier>LCCN: 85-644924</identifier><language>eng</language><publisher>New York, NY, USA: ACM</publisher><subject>Capacitors ; Cross-Entropy ; Decoupling Capacitor ; Entropy ; Gradient methods ; Hardware -- Electronic design automation -- Physical design (EDA) -- Partitioning and floorplanning ; Large-scale systems ; Monte Carlo methods ; Optimization methods ; Parallel Computing ; Partitioning algorithms ; Power grids ; Power supplies ; Sampling methods</subject><ispartof>Design Automation Conference, 2010, p.843-848</ispartof><rights>2010 ACM</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5522930$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,796,2056,27924,54757,54919</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5522930$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhao, Xueqian</creatorcontrib><creatorcontrib>Guo, Yonghe</creatorcontrib><creatorcontrib>Feng, Zhuo</creatorcontrib><creatorcontrib>Hu, Shiyan</creatorcontrib><title>Parallel hierarchical cross entropy optimization for on-chip decap budgeting</title><title>Design Automation Conference</title><addtitle>DAC</addtitle><description>Decoupling capacitor (decap) placement has been widely adopted as an effective way to suppress dynamic power supply noise. Traditional decap budgeting algorithms usually explore the sensitivity-based nonlinear optimizations or conjugate gradient methods, which can be prohibitively expensive for large-scale decap budgeting problems. We present a hierarchical cross entropy (CE) optimization technique for solving the decap budgeting problem. CE is an advanced optimization framework which explores the power of rare-event probability theory and importance sampling. To achieve high efficiency, a sensitivity-guided cross entropy (SCE) algorithm is proposed which integrates CE with a partitioning-based sampling strategy to effectively reduce the dimensionality in solving the large scale decap budgeting problems. Extensive experiments on industrial power grid benchmarks show that the proposed SCE method converges 2X faster than the prior methods and 10X faster than the standard CE method, while gaining up to 25% improvement on power grid supply noise. Importantly, the proposed SCE algorithm is parallel-friendly since the simulation samples of each SCE iteration can be independently obtained in parallel. We obtain up to 1.9X speedup when running the SCE decap budgeting algorithm on a dual-core-dual-GPU system.</description><subject>Capacitors</subject><subject>Cross-Entropy</subject><subject>Decoupling Capacitor</subject><subject>Entropy</subject><subject>Gradient methods</subject><subject>Hardware -- Electronic design automation -- Physical design (EDA) -- Partitioning and floorplanning</subject><subject>Large-scale systems</subject><subject>Monte Carlo methods</subject><subject>Optimization methods</subject><subject>Parallel Computing</subject><subject>Partitioning algorithms</subject><subject>Power grids</subject><subject>Power supplies</subject><subject>Sampling methods</subject><issn>0738-100X</issn><isbn>9781450300025</isbn><isbn>1450300022</isbn><isbn>9781424466771</isbn><isbn>1424466776</isbn><isbn>9781450300025</isbn><isbn>1450300022</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNqNkL1PwzAUxI2gElXpzMDikSXF33ZGVPElVYIBJDbLdp5bQ1pHThjgrydVOzGhN5yefnc3HEKXlCwoFfKGGq6ZFou9CiNP0LzWZgSEE0KYPP3zn6Ep0dxUlJD3CZoaWSkhaibO0bzvP0YLpYxILaZo9eKKa1to8SZBcSVsUnAtDiX3PYbdUHL3jXM3pG36cUPKOxxzwXlXjcYONxBch_1Xs4Yh7dYXaBJd28P8qDP0dn_3unysVs8PT8vbVeWY0EPFvaJaR1ACDADVgqvGR8nHU7USIdRRmShoEzjzdTDByEil51GBl05SPkNXh94EALYraevKt5WSsZqTkS4O1IWt9Tl_9pYSu5_RHme0xxmtLwniGLj-Z4D_AkhTbAg</recordid><startdate>20100613</startdate><enddate>20100613</enddate><creator>Zhao, Xueqian</creator><creator>Guo, Yonghe</creator><creator>Feng, Zhuo</creator><creator>Hu, Shiyan</creator><general>ACM</general><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20100613</creationdate><title>Parallel hierarchical cross entropy optimization for on-chip decap budgeting</title><author>Zhao, Xueqian ; Guo, Yonghe ; Feng, Zhuo ; Hu, Shiyan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a247t-3b6177fe64e8ee17436dbf535356964cc9f68f41dc32b9c8c85f15b3f6eb5a513</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Capacitors</topic><topic>Cross-Entropy</topic><topic>Decoupling Capacitor</topic><topic>Entropy</topic><topic>Gradient methods</topic><topic>Hardware -- Electronic design automation -- Physical design (EDA) -- Partitioning and floorplanning</topic><topic>Large-scale systems</topic><topic>Monte Carlo methods</topic><topic>Optimization methods</topic><topic>Parallel Computing</topic><topic>Partitioning algorithms</topic><topic>Power grids</topic><topic>Power supplies</topic><topic>Sampling methods</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Xueqian</creatorcontrib><creatorcontrib>Guo, Yonghe</creatorcontrib><creatorcontrib>Feng, Zhuo</creatorcontrib><creatorcontrib>Hu, Shiyan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhao, Xueqian</au><au>Guo, Yonghe</au><au>Feng, Zhuo</au><au>Hu, Shiyan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Parallel hierarchical cross entropy optimization for on-chip decap budgeting</atitle><btitle>Design Automation Conference</btitle><stitle>DAC</stitle><date>2010-06-13</date><risdate>2010</risdate><spage>843</spage><epage>848</epage><pages>843-848</pages><issn>0738-100X</issn><isbn>9781450300025</isbn><isbn>1450300022</isbn><isbn>9781424466771</isbn><isbn>1424466776</isbn><eisbn>9781450300025</eisbn><eisbn>1450300022</eisbn><abstract>Decoupling capacitor (decap) placement has been widely adopted as an effective way to suppress dynamic power supply noise. Traditional decap budgeting algorithms usually explore the sensitivity-based nonlinear optimizations or conjugate gradient methods, which can be prohibitively expensive for large-scale decap budgeting problems. We present a hierarchical cross entropy (CE) optimization technique for solving the decap budgeting problem. CE is an advanced optimization framework which explores the power of rare-event probability theory and importance sampling. To achieve high efficiency, a sensitivity-guided cross entropy (SCE) algorithm is proposed which integrates CE with a partitioning-based sampling strategy to effectively reduce the dimensionality in solving the large scale decap budgeting problems. Extensive experiments on industrial power grid benchmarks show that the proposed SCE method converges 2X faster than the prior methods and 10X faster than the standard CE method, while gaining up to 25% improvement on power grid supply noise. Importantly, the proposed SCE algorithm is parallel-friendly since the simulation samples of each SCE iteration can be independently obtained in parallel. We obtain up to 1.9X speedup when running the SCE decap budgeting algorithm on a dual-core-dual-GPU system.</abstract><cop>New York, NY, USA</cop><pub>ACM</pub><doi>10.1145/1837274.1837485</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0738-100X
ispartof Design Automation Conference, 2010, p.843-848
issn 0738-100X
language eng
recordid cdi_ieee_primary_5522930
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Capacitors
Cross-Entropy
Decoupling Capacitor
Entropy
Gradient methods
Hardware -- Electronic design automation -- Physical design (EDA) -- Partitioning and floorplanning
Large-scale systems
Monte Carlo methods
Optimization methods
Parallel Computing
Partitioning algorithms
Power grids
Power supplies
Sampling methods
title Parallel hierarchical cross entropy optimization for on-chip decap budgeting
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T10%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-acm_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Parallel%20hierarchical%20cross%20entropy%20optimization%20for%20on-chip%20decap%20budgeting&rft.btitle=Design%20Automation%20Conference&rft.au=Zhao,%20Xueqian&rft.date=2010-06-13&rft.spage=843&rft.epage=848&rft.pages=843-848&rft.issn=0738-100X&rft.isbn=9781450300025&rft.isbn_list=1450300022&rft.isbn_list=9781424466771&rft.isbn_list=1424466776&rft_id=info:doi/10.1145/1837274.1837485&rft_dat=%3Cacm_6IE%3Eacm_books_10_1145_1837274_1837485%3C/acm_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781450300025&rft.eisbn_list=1450300022&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5522930&rfr_iscdi=true