Prediction of Urban Short-Term Water Consumption in Zhengzhou City

For supplying optimal scheduling of Zhengzhou city with short-term water consumption data, this paper builds three types of forecasting model according to moving arithmetic mean method, regression analysis method and BP neural network. As a result, forecasting result is obtained by water supply data...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jianhua Liu, Rui Zhang, Lailing Wang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 926
container_issue
container_start_page 922
container_title
container_volume 2
creator Jianhua Liu
Rui Zhang
Lailing Wang
description For supplying optimal scheduling of Zhengzhou city with short-term water consumption data, this paper builds three types of forecasting model according to moving arithmetic mean method, regression analysis method and BP neural network. As a result, forecasting result is obtained by water supply data and meteorological data. The study shows that three different methods all can meet the need of urban water supply project in the prediction of hourly water consumption. Regression analysis and BP neural network can obtain better forecasting result and can gracefully satisfy the request of urban water supply scheduling. If water consumption measured in 15-minute unit, the forecasting result of BP neural network is better, this can meet the urban water supply request better.
doi_str_mv 10.1109/ICICTA.2010.535
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5522593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5522593</ieee_id><sourcerecordid>5522593</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-70aa4db06cd10e9a0c85b2c9f7df0f6d78d19c1e1d4f53b8f5f58db4cc70c09c3</originalsourceid><addsrcrecordid>eNpNj0tLxDAcxCOyoK49e_CSL9D1nzRpkuMafBQWFKwIXpY0Dxux7ZJ2D-untz4OzmWYH8PAIHRBYEUIqKtKV7peryjMgBf8CGVKSMIoY4JKoMf_s1DlAp19VxWVgssTlI3jO8xinM74FF0_Ju-ineLQ4yHg59SYHj-1Q5ry2qcOv5jJJ6yHftx3u59W7PFr6_u3z3bYYx2nwzlaBPMx-uzPl6i-van1fb55uKv0epNHBVMuwBjmGiitI-CVASt5Q60KwgUIpRPSEWWJJ44FXjQy8MCla5i1AiwoWyzR5e9s9N5vdyl2Jh22fP7BVVF8AeynTh4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Prediction of Urban Short-Term Water Consumption in Zhengzhou City</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jianhua Liu ; Rui Zhang ; Lailing Wang</creator><creatorcontrib>Jianhua Liu ; Rui Zhang ; Lailing Wang</creatorcontrib><description>For supplying optimal scheduling of Zhengzhou city with short-term water consumption data, this paper builds three types of forecasting model according to moving arithmetic mean method, regression analysis method and BP neural network. As a result, forecasting result is obtained by water supply data and meteorological data. The study shows that three different methods all can meet the need of urban water supply project in the prediction of hourly water consumption. Regression analysis and BP neural network can obtain better forecasting result and can gracefully satisfy the request of urban water supply scheduling. If water consumption measured in 15-minute unit, the forecasting result of BP neural network is better, this can meet the urban water supply request better.</description><identifier>ISBN: 9781424472796</identifier><identifier>ISBN: 1424472792</identifier><identifier>EISBN: 9781424472802</identifier><identifier>EISBN: 1424472806</identifier><identifier>DOI: 10.1109/ICICTA.2010.535</identifier><identifier>LCCN: 2010928758</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cities and towns ; Economic forecasting ; Meteorology ; neural network ; Neural networks ; Optimal scheduling ; Predictive models ; Regression analysis ; Time series analysis ; urban water supply system ; Water conservation ; water consumption forecast ; Weather forecasting</subject><ispartof>2010 International Conference on Intelligent Computation Technology and Automation, 2010, Vol.2, p.922-926</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5522593$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5522593$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jianhua Liu</creatorcontrib><creatorcontrib>Rui Zhang</creatorcontrib><creatorcontrib>Lailing Wang</creatorcontrib><title>Prediction of Urban Short-Term Water Consumption in Zhengzhou City</title><title>2010 International Conference on Intelligent Computation Technology and Automation</title><addtitle>ICICTA</addtitle><description>For supplying optimal scheduling of Zhengzhou city with short-term water consumption data, this paper builds three types of forecasting model according to moving arithmetic mean method, regression analysis method and BP neural network. As a result, forecasting result is obtained by water supply data and meteorological data. The study shows that three different methods all can meet the need of urban water supply project in the prediction of hourly water consumption. Regression analysis and BP neural network can obtain better forecasting result and can gracefully satisfy the request of urban water supply scheduling. If water consumption measured in 15-minute unit, the forecasting result of BP neural network is better, this can meet the urban water supply request better.</description><subject>Cities and towns</subject><subject>Economic forecasting</subject><subject>Meteorology</subject><subject>neural network</subject><subject>Neural networks</subject><subject>Optimal scheduling</subject><subject>Predictive models</subject><subject>Regression analysis</subject><subject>Time series analysis</subject><subject>urban water supply system</subject><subject>Water conservation</subject><subject>water consumption forecast</subject><subject>Weather forecasting</subject><isbn>9781424472796</isbn><isbn>1424472792</isbn><isbn>9781424472802</isbn><isbn>1424472806</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpNj0tLxDAcxCOyoK49e_CSL9D1nzRpkuMafBQWFKwIXpY0Dxux7ZJ2D-untz4OzmWYH8PAIHRBYEUIqKtKV7peryjMgBf8CGVKSMIoY4JKoMf_s1DlAp19VxWVgssTlI3jO8xinM74FF0_Ju-ineLQ4yHg59SYHj-1Q5ry2qcOv5jJJ6yHftx3u59W7PFr6_u3z3bYYx2nwzlaBPMx-uzPl6i-van1fb55uKv0epNHBVMuwBjmGiitI-CVASt5Q60KwgUIpRPSEWWJJ44FXjQy8MCla5i1AiwoWyzR5e9s9N5vdyl2Jh22fP7BVVF8AeynTh4</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Jianhua Liu</creator><creator>Rui Zhang</creator><creator>Lailing Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>Prediction of Urban Short-Term Water Consumption in Zhengzhou City</title><author>Jianhua Liu ; Rui Zhang ; Lailing Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-70aa4db06cd10e9a0c85b2c9f7df0f6d78d19c1e1d4f53b8f5f58db4cc70c09c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cities and towns</topic><topic>Economic forecasting</topic><topic>Meteorology</topic><topic>neural network</topic><topic>Neural networks</topic><topic>Optimal scheduling</topic><topic>Predictive models</topic><topic>Regression analysis</topic><topic>Time series analysis</topic><topic>urban water supply system</topic><topic>Water conservation</topic><topic>water consumption forecast</topic><topic>Weather forecasting</topic><toplevel>online_resources</toplevel><creatorcontrib>Jianhua Liu</creatorcontrib><creatorcontrib>Rui Zhang</creatorcontrib><creatorcontrib>Lailing Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jianhua Liu</au><au>Rui Zhang</au><au>Lailing Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Prediction of Urban Short-Term Water Consumption in Zhengzhou City</atitle><btitle>2010 International Conference on Intelligent Computation Technology and Automation</btitle><stitle>ICICTA</stitle><date>2010-05</date><risdate>2010</risdate><volume>2</volume><spage>922</spage><epage>926</epage><pages>922-926</pages><isbn>9781424472796</isbn><isbn>1424472792</isbn><eisbn>9781424472802</eisbn><eisbn>1424472806</eisbn><abstract>For supplying optimal scheduling of Zhengzhou city with short-term water consumption data, this paper builds three types of forecasting model according to moving arithmetic mean method, regression analysis method and BP neural network. As a result, forecasting result is obtained by water supply data and meteorological data. The study shows that three different methods all can meet the need of urban water supply project in the prediction of hourly water consumption. Regression analysis and BP neural network can obtain better forecasting result and can gracefully satisfy the request of urban water supply scheduling. If water consumption measured in 15-minute unit, the forecasting result of BP neural network is better, this can meet the urban water supply request better.</abstract><pub>IEEE</pub><doi>10.1109/ICICTA.2010.535</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 9781424472796
ispartof 2010 International Conference on Intelligent Computation Technology and Automation, 2010, Vol.2, p.922-926
issn
language eng
recordid cdi_ieee_primary_5522593
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cities and towns
Economic forecasting
Meteorology
neural network
Neural networks
Optimal scheduling
Predictive models
Regression analysis
Time series analysis
urban water supply system
Water conservation
water consumption forecast
Weather forecasting
title Prediction of Urban Short-Term Water Consumption in Zhengzhou City
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A07%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Prediction%20of%20Urban%20Short-Term%20Water%20Consumption%20in%20Zhengzhou%20City&rft.btitle=2010%20International%20Conference%20on%20Intelligent%20Computation%20Technology%20and%20Automation&rft.au=Jianhua%20Liu&rft.date=2010-05&rft.volume=2&rft.spage=922&rft.epage=926&rft.pages=922-926&rft.isbn=9781424472796&rft.isbn_list=1424472792&rft_id=info:doi/10.1109/ICICTA.2010.535&rft_dat=%3Cieee_6IE%3E5522593%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424472802&rft.eisbn_list=1424472806&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5522593&rfr_iscdi=true