Visible-infrared fusion in the frame of an obstacle recognition system
In this article we propose different fusion schemes using information provided by visible and infrared images for road obstacle SVM-based classification. Three approaches for the fusion of VIS and IR information are presented. The early fusion yields a feature vector integrating at the feature level...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 6 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | 1 |
creator | Apatean, Anca Rusu, Corneliu Rogozan, Alexandrina Bensrhair, Abdelaziz |
description | In this article we propose different fusion schemes using information provided by visible and infrared images for road obstacle SVM-based classification. Three approaches for the fusion of VIS and IR information are presented. The early fusion yields a feature vector integrating at the feature level both visual and infrared information. The obtained bimodal feature vector is used as input to an SVM-based classification scheme. The intermediate fusion, which is performed at the kernel level combines different simple kernels of the SVM classifier in order to obtain a multiple kernel (MK). The late fusion combines matching scores of individual obstacle recognition modules in order to improve the system's final decision. In this late fusion case two methods have been considered to calculate the optimum weighting parameter: an Adaptive Fusion of Scores (AFScores) and a non-Adaptive Fusion of Scores (nAFScores). Comparative results showed that fusion-based obstacle recognition systems outperform monomodal visual and infrared obstacle recognizers. An important advantage of these fusion-based systems is their possibility to adapt to the environmental illumination conditions due to the weighting parameter which can contribute to the adjustments of the system's final decision. |
doi_str_mv | 10.1109/AQTR.2010.5520865 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5520865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5520865</ieee_id><sourcerecordid>5520865</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-993fe6e5b5b022115e5652bb1e83f52e4a4fbff0b25624b08100a198456e37b63</originalsourceid><addsrcrecordid>eNo1j91KAzEUhCMiqHUfQLzJC2w9OZuT3VyWYlUoiLJ4W5J6opH9kU286Nu7Yp2b4RuGgRHiWsFSKbC3q-f2ZYkwIxFCY-hEFLZulEatTY1kT8XlP2h1LoqUPmGWJjTWXIjNa0zRd1zGIUxu4jcZvlMcBxkHmT9YzmHPcgzSDXL0Kbt9x3Li_fg-xPzbS4eUub8SZ8F1iYujL0S7uWvXD-X26f5xvdqW0UIura0CGyZPHhCVIiZD6L3ipgqErJ0OPgTwSAa1h0YBOGUbTYar2ptqIW7-ZiMz776m2LvpsDs-r34AhbhL4Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Visible-infrared fusion in the frame of an obstacle recognition system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Apatean, Anca ; Rusu, Corneliu ; Rogozan, Alexandrina ; Bensrhair, Abdelaziz</creator><creatorcontrib>Apatean, Anca ; Rusu, Corneliu ; Rogozan, Alexandrina ; Bensrhair, Abdelaziz</creatorcontrib><description>In this article we propose different fusion schemes using information provided by visible and infrared images for road obstacle SVM-based classification. Three approaches for the fusion of VIS and IR information are presented. The early fusion yields a feature vector integrating at the feature level both visual and infrared information. The obtained bimodal feature vector is used as input to an SVM-based classification scheme. The intermediate fusion, which is performed at the kernel level combines different simple kernels of the SVM classifier in order to obtain a multiple kernel (MK). The late fusion combines matching scores of individual obstacle recognition modules in order to improve the system's final decision. In this late fusion case two methods have been considered to calculate the optimum weighting parameter: an Adaptive Fusion of Scores (AFScores) and a non-Adaptive Fusion of Scores (nAFScores). Comparative results showed that fusion-based obstacle recognition systems outperform monomodal visual and infrared obstacle recognizers. An important advantage of these fusion-based systems is their possibility to adapt to the environmental illumination conditions due to the weighting parameter which can contribute to the adjustments of the system's final decision.</description><identifier>ISBN: 1424467241</identifier><identifier>ISBN: 9781424467242</identifier><identifier>EISBN: 9781424467259</identifier><identifier>EISBN: 1424467233</identifier><identifier>EISBN: 9781424467235</identifier><identifier>EISBN: 142446725X</identifier><identifier>DOI: 10.1109/AQTR.2010.5520865</identifier><language>eng</language><publisher>IEEE</publisher><subject>Image recognition ; Kernel ; Laboratories ; Laser radar ; Lighting ; Object detection ; Roads ; Sensor systems ; Support vector machine classification ; Support vector machines</subject><ispartof>2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), 2010, Vol.1, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5520865$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5520865$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Apatean, Anca</creatorcontrib><creatorcontrib>Rusu, Corneliu</creatorcontrib><creatorcontrib>Rogozan, Alexandrina</creatorcontrib><creatorcontrib>Bensrhair, Abdelaziz</creatorcontrib><title>Visible-infrared fusion in the frame of an obstacle recognition system</title><title>2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR)</title><addtitle>AQTR</addtitle><description>In this article we propose different fusion schemes using information provided by visible and infrared images for road obstacle SVM-based classification. Three approaches for the fusion of VIS and IR information are presented. The early fusion yields a feature vector integrating at the feature level both visual and infrared information. The obtained bimodal feature vector is used as input to an SVM-based classification scheme. The intermediate fusion, which is performed at the kernel level combines different simple kernels of the SVM classifier in order to obtain a multiple kernel (MK). The late fusion combines matching scores of individual obstacle recognition modules in order to improve the system's final decision. In this late fusion case two methods have been considered to calculate the optimum weighting parameter: an Adaptive Fusion of Scores (AFScores) and a non-Adaptive Fusion of Scores (nAFScores). Comparative results showed that fusion-based obstacle recognition systems outperform monomodal visual and infrared obstacle recognizers. An important advantage of these fusion-based systems is their possibility to adapt to the environmental illumination conditions due to the weighting parameter which can contribute to the adjustments of the system's final decision.</description><subject>Image recognition</subject><subject>Kernel</subject><subject>Laboratories</subject><subject>Laser radar</subject><subject>Lighting</subject><subject>Object detection</subject><subject>Roads</subject><subject>Sensor systems</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><isbn>1424467241</isbn><isbn>9781424467242</isbn><isbn>9781424467259</isbn><isbn>1424467233</isbn><isbn>9781424467235</isbn><isbn>142446725X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j91KAzEUhCMiqHUfQLzJC2w9OZuT3VyWYlUoiLJ4W5J6opH9kU286Nu7Yp2b4RuGgRHiWsFSKbC3q-f2ZYkwIxFCY-hEFLZulEatTY1kT8XlP2h1LoqUPmGWJjTWXIjNa0zRd1zGIUxu4jcZvlMcBxkHmT9YzmHPcgzSDXL0Kbt9x3Li_fg-xPzbS4eUub8SZ8F1iYujL0S7uWvXD-X26f5xvdqW0UIura0CGyZPHhCVIiZD6L3ipgqErJ0OPgTwSAa1h0YBOGUbTYar2ptqIW7-ZiMz776m2LvpsDs-r34AhbhL4Q</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Apatean, Anca</creator><creator>Rusu, Corneliu</creator><creator>Rogozan, Alexandrina</creator><creator>Bensrhair, Abdelaziz</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>Visible-infrared fusion in the frame of an obstacle recognition system</title><author>Apatean, Anca ; Rusu, Corneliu ; Rogozan, Alexandrina ; Bensrhair, Abdelaziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-993fe6e5b5b022115e5652bb1e83f52e4a4fbff0b25624b08100a198456e37b63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Image recognition</topic><topic>Kernel</topic><topic>Laboratories</topic><topic>Laser radar</topic><topic>Lighting</topic><topic>Object detection</topic><topic>Roads</topic><topic>Sensor systems</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Apatean, Anca</creatorcontrib><creatorcontrib>Rusu, Corneliu</creatorcontrib><creatorcontrib>Rogozan, Alexandrina</creatorcontrib><creatorcontrib>Bensrhair, Abdelaziz</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Apatean, Anca</au><au>Rusu, Corneliu</au><au>Rogozan, Alexandrina</au><au>Bensrhair, Abdelaziz</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Visible-infrared fusion in the frame of an obstacle recognition system</atitle><btitle>2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR)</btitle><stitle>AQTR</stitle><date>2010-05</date><risdate>2010</risdate><volume>1</volume><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1424467241</isbn><isbn>9781424467242</isbn><eisbn>9781424467259</eisbn><eisbn>1424467233</eisbn><eisbn>9781424467235</eisbn><eisbn>142446725X</eisbn><abstract>In this article we propose different fusion schemes using information provided by visible and infrared images for road obstacle SVM-based classification. Three approaches for the fusion of VIS and IR information are presented. The early fusion yields a feature vector integrating at the feature level both visual and infrared information. The obtained bimodal feature vector is used as input to an SVM-based classification scheme. The intermediate fusion, which is performed at the kernel level combines different simple kernels of the SVM classifier in order to obtain a multiple kernel (MK). The late fusion combines matching scores of individual obstacle recognition modules in order to improve the system's final decision. In this late fusion case two methods have been considered to calculate the optimum weighting parameter: an Adaptive Fusion of Scores (AFScores) and a non-Adaptive Fusion of Scores (nAFScores). Comparative results showed that fusion-based obstacle recognition systems outperform monomodal visual and infrared obstacle recognizers. An important advantage of these fusion-based systems is their possibility to adapt to the environmental illumination conditions due to the weighting parameter which can contribute to the adjustments of the system's final decision.</abstract><pub>IEEE</pub><doi>10.1109/AQTR.2010.5520865</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424467241 |
ispartof | 2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), 2010, Vol.1, p.1-6 |
issn | |
language | eng |
recordid | cdi_ieee_primary_5520865 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Image recognition Kernel Laboratories Laser radar Lighting Object detection Roads Sensor systems Support vector machine classification Support vector machines |
title | Visible-infrared fusion in the frame of an obstacle recognition system |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Visible-infrared%20fusion%20in%20the%20frame%20of%20an%20obstacle%20recognition%20system&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Automation,%20Quality%20and%20Testing,%20Robotics%20(AQTR)&rft.au=Apatean,%20Anca&rft.date=2010-05&rft.volume=1&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1424467241&rft.isbn_list=9781424467242&rft_id=info:doi/10.1109/AQTR.2010.5520865&rft_dat=%3Cieee_6IE%3E5520865%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424467259&rft.eisbn_list=1424467233&rft.eisbn_list=9781424467235&rft.eisbn_list=142446725X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5520865&rfr_iscdi=true |