Visible-infrared fusion in the frame of an obstacle recognition system

In this article we propose different fusion schemes using information provided by visible and infrared images for road obstacle SVM-based classification. Three approaches for the fusion of VIS and IR information are presented. The early fusion yields a feature vector integrating at the feature level...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Apatean, Anca, Rusu, Corneliu, Rogozan, Alexandrina, Bensrhair, Abdelaziz
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6
container_issue
container_start_page 1
container_title
container_volume 1
creator Apatean, Anca
Rusu, Corneliu
Rogozan, Alexandrina
Bensrhair, Abdelaziz
description In this article we propose different fusion schemes using information provided by visible and infrared images for road obstacle SVM-based classification. Three approaches for the fusion of VIS and IR information are presented. The early fusion yields a feature vector integrating at the feature level both visual and infrared information. The obtained bimodal feature vector is used as input to an SVM-based classification scheme. The intermediate fusion, which is performed at the kernel level combines different simple kernels of the SVM classifier in order to obtain a multiple kernel (MK). The late fusion combines matching scores of individual obstacle recognition modules in order to improve the system's final decision. In this late fusion case two methods have been considered to calculate the optimum weighting parameter: an Adaptive Fusion of Scores (AFScores) and a non-Adaptive Fusion of Scores (nAFScores). Comparative results showed that fusion-based obstacle recognition systems outperform monomodal visual and infrared obstacle recognizers. An important advantage of these fusion-based systems is their possibility to adapt to the environmental illumination conditions due to the weighting parameter which can contribute to the adjustments of the system's final decision.
doi_str_mv 10.1109/AQTR.2010.5520865
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5520865</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5520865</ieee_id><sourcerecordid>5520865</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-993fe6e5b5b022115e5652bb1e83f52e4a4fbff0b25624b08100a198456e37b63</originalsourceid><addsrcrecordid>eNo1j91KAzEUhCMiqHUfQLzJC2w9OZuT3VyWYlUoiLJ4W5J6opH9kU286Nu7Yp2b4RuGgRHiWsFSKbC3q-f2ZYkwIxFCY-hEFLZulEatTY1kT8XlP2h1LoqUPmGWJjTWXIjNa0zRd1zGIUxu4jcZvlMcBxkHmT9YzmHPcgzSDXL0Kbt9x3Li_fg-xPzbS4eUub8SZ8F1iYujL0S7uWvXD-X26f5xvdqW0UIura0CGyZPHhCVIiZD6L3ipgqErJ0OPgTwSAa1h0YBOGUbTYar2ptqIW7-ZiMz776m2LvpsDs-r34AhbhL4Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Visible-infrared fusion in the frame of an obstacle recognition system</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Apatean, Anca ; Rusu, Corneliu ; Rogozan, Alexandrina ; Bensrhair, Abdelaziz</creator><creatorcontrib>Apatean, Anca ; Rusu, Corneliu ; Rogozan, Alexandrina ; Bensrhair, Abdelaziz</creatorcontrib><description>In this article we propose different fusion schemes using information provided by visible and infrared images for road obstacle SVM-based classification. Three approaches for the fusion of VIS and IR information are presented. The early fusion yields a feature vector integrating at the feature level both visual and infrared information. The obtained bimodal feature vector is used as input to an SVM-based classification scheme. The intermediate fusion, which is performed at the kernel level combines different simple kernels of the SVM classifier in order to obtain a multiple kernel (MK). The late fusion combines matching scores of individual obstacle recognition modules in order to improve the system's final decision. In this late fusion case two methods have been considered to calculate the optimum weighting parameter: an Adaptive Fusion of Scores (AFScores) and a non-Adaptive Fusion of Scores (nAFScores). Comparative results showed that fusion-based obstacle recognition systems outperform monomodal visual and infrared obstacle recognizers. An important advantage of these fusion-based systems is their possibility to adapt to the environmental illumination conditions due to the weighting parameter which can contribute to the adjustments of the system's final decision.</description><identifier>ISBN: 1424467241</identifier><identifier>ISBN: 9781424467242</identifier><identifier>EISBN: 9781424467259</identifier><identifier>EISBN: 1424467233</identifier><identifier>EISBN: 9781424467235</identifier><identifier>EISBN: 142446725X</identifier><identifier>DOI: 10.1109/AQTR.2010.5520865</identifier><language>eng</language><publisher>IEEE</publisher><subject>Image recognition ; Kernel ; Laboratories ; Laser radar ; Lighting ; Object detection ; Roads ; Sensor systems ; Support vector machine classification ; Support vector machines</subject><ispartof>2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), 2010, Vol.1, p.1-6</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5520865$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5520865$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Apatean, Anca</creatorcontrib><creatorcontrib>Rusu, Corneliu</creatorcontrib><creatorcontrib>Rogozan, Alexandrina</creatorcontrib><creatorcontrib>Bensrhair, Abdelaziz</creatorcontrib><title>Visible-infrared fusion in the frame of an obstacle recognition system</title><title>2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR)</title><addtitle>AQTR</addtitle><description>In this article we propose different fusion schemes using information provided by visible and infrared images for road obstacle SVM-based classification. Three approaches for the fusion of VIS and IR information are presented. The early fusion yields a feature vector integrating at the feature level both visual and infrared information. The obtained bimodal feature vector is used as input to an SVM-based classification scheme. The intermediate fusion, which is performed at the kernel level combines different simple kernels of the SVM classifier in order to obtain a multiple kernel (MK). The late fusion combines matching scores of individual obstacle recognition modules in order to improve the system's final decision. In this late fusion case two methods have been considered to calculate the optimum weighting parameter: an Adaptive Fusion of Scores (AFScores) and a non-Adaptive Fusion of Scores (nAFScores). Comparative results showed that fusion-based obstacle recognition systems outperform monomodal visual and infrared obstacle recognizers. An important advantage of these fusion-based systems is their possibility to adapt to the environmental illumination conditions due to the weighting parameter which can contribute to the adjustments of the system's final decision.</description><subject>Image recognition</subject><subject>Kernel</subject><subject>Laboratories</subject><subject>Laser radar</subject><subject>Lighting</subject><subject>Object detection</subject><subject>Roads</subject><subject>Sensor systems</subject><subject>Support vector machine classification</subject><subject>Support vector machines</subject><isbn>1424467241</isbn><isbn>9781424467242</isbn><isbn>9781424467259</isbn><isbn>1424467233</isbn><isbn>9781424467235</isbn><isbn>142446725X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j91KAzEUhCMiqHUfQLzJC2w9OZuT3VyWYlUoiLJ4W5J6opH9kU286Nu7Yp2b4RuGgRHiWsFSKbC3q-f2ZYkwIxFCY-hEFLZulEatTY1kT8XlP2h1LoqUPmGWJjTWXIjNa0zRd1zGIUxu4jcZvlMcBxkHmT9YzmHPcgzSDXL0Kbt9x3Li_fg-xPzbS4eUub8SZ8F1iYujL0S7uWvXD-X26f5xvdqW0UIura0CGyZPHhCVIiZD6L3ipgqErJ0OPgTwSAa1h0YBOGUbTYar2ptqIW7-ZiMz776m2LvpsDs-r34AhbhL4Q</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Apatean, Anca</creator><creator>Rusu, Corneliu</creator><creator>Rogozan, Alexandrina</creator><creator>Bensrhair, Abdelaziz</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>Visible-infrared fusion in the frame of an obstacle recognition system</title><author>Apatean, Anca ; Rusu, Corneliu ; Rogozan, Alexandrina ; Bensrhair, Abdelaziz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-993fe6e5b5b022115e5652bb1e83f52e4a4fbff0b25624b08100a198456e37b63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Image recognition</topic><topic>Kernel</topic><topic>Laboratories</topic><topic>Laser radar</topic><topic>Lighting</topic><topic>Object detection</topic><topic>Roads</topic><topic>Sensor systems</topic><topic>Support vector machine classification</topic><topic>Support vector machines</topic><toplevel>online_resources</toplevel><creatorcontrib>Apatean, Anca</creatorcontrib><creatorcontrib>Rusu, Corneliu</creatorcontrib><creatorcontrib>Rogozan, Alexandrina</creatorcontrib><creatorcontrib>Bensrhair, Abdelaziz</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Apatean, Anca</au><au>Rusu, Corneliu</au><au>Rogozan, Alexandrina</au><au>Bensrhair, Abdelaziz</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Visible-infrared fusion in the frame of an obstacle recognition system</atitle><btitle>2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR)</btitle><stitle>AQTR</stitle><date>2010-05</date><risdate>2010</risdate><volume>1</volume><spage>1</spage><epage>6</epage><pages>1-6</pages><isbn>1424467241</isbn><isbn>9781424467242</isbn><eisbn>9781424467259</eisbn><eisbn>1424467233</eisbn><eisbn>9781424467235</eisbn><eisbn>142446725X</eisbn><abstract>In this article we propose different fusion schemes using information provided by visible and infrared images for road obstacle SVM-based classification. Three approaches for the fusion of VIS and IR information are presented. The early fusion yields a feature vector integrating at the feature level both visual and infrared information. The obtained bimodal feature vector is used as input to an SVM-based classification scheme. The intermediate fusion, which is performed at the kernel level combines different simple kernels of the SVM classifier in order to obtain a multiple kernel (MK). The late fusion combines matching scores of individual obstacle recognition modules in order to improve the system's final decision. In this late fusion case two methods have been considered to calculate the optimum weighting parameter: an Adaptive Fusion of Scores (AFScores) and a non-Adaptive Fusion of Scores (nAFScores). Comparative results showed that fusion-based obstacle recognition systems outperform monomodal visual and infrared obstacle recognizers. An important advantage of these fusion-based systems is their possibility to adapt to the environmental illumination conditions due to the weighting parameter which can contribute to the adjustments of the system's final decision.</abstract><pub>IEEE</pub><doi>10.1109/AQTR.2010.5520865</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424467241
ispartof 2010 IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), 2010, Vol.1, p.1-6
issn
language eng
recordid cdi_ieee_primary_5520865
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Image recognition
Kernel
Laboratories
Laser radar
Lighting
Object detection
Roads
Sensor systems
Support vector machine classification
Support vector machines
title Visible-infrared fusion in the frame of an obstacle recognition system
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A14%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Visible-infrared%20fusion%20in%20the%20frame%20of%20an%20obstacle%20recognition%20system&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Automation,%20Quality%20and%20Testing,%20Robotics%20(AQTR)&rft.au=Apatean,%20Anca&rft.date=2010-05&rft.volume=1&rft.spage=1&rft.epage=6&rft.pages=1-6&rft.isbn=1424467241&rft.isbn_list=9781424467242&rft_id=info:doi/10.1109/AQTR.2010.5520865&rft_dat=%3Cieee_6IE%3E5520865%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424467259&rft.eisbn_list=1424467233&rft.eisbn_list=9781424467235&rft.eisbn_list=142446725X&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5520865&rfr_iscdi=true