Automatic Sleep Stage Scoring Using Hilbert-Huang Transform with BP Neural Network

In this paper, a novel method based on Hilbert-Huang Transform (HHT) and backpropagation (BP) neural network is proposed to perform automatic sleep stages classification. Features extracted from 30-second epoch of EEG using HHT are good representations of EEG signal. A three-layer BP neural network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yuelei Liu, Lanfeng Yan, Bo Zeng, Wei Wang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Yuelei Liu
Lanfeng Yan
Bo Zeng
Wei Wang
description In this paper, a novel method based on Hilbert-Huang Transform (HHT) and backpropagation (BP) neural network is proposed to perform automatic sleep stages classification. Features extracted from 30-second epoch of EEG using HHT are good representations of EEG signal. A three-layer BP neural network is employed to classify these features to one appropriate stage. For a four-stage classification, consisting of Awake, Stage 1 + REM, Stage 2 and slow wave stage (SWS), of one single Pz-Oz channel EEG signal alone from 7 human subjects, the average stage recognition rate of the proposed method can achieve Awake 95.2%, Stage 1+Rem 87.1%, Stage 2 82.0%, SWS 92.9%. The experiment results show the method is effective and promising in automatic sleep states classification. It can be a powerful tool in sleep quality monitoring and sleep-related diseases diagnosis.
doi_str_mv 10.1109/ICBBE.2010.5516372
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5516372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5516372</ieee_id><sourcerecordid>5516372</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-195688a3bfe25be2b3ff9eebfbd1a2dafca589ef75ec86607729d959d83e7e0e3</originalsourceid><addsrcrecordid>eNpVkM1OAjEUhesPiYi8gG76AoO97XTaLoGgkBA1AmvSmbnF6sCQTgnh7R0jMXFzTr6c5FscQu6BDQCYeZyNR6PJgLOWpYRMKH5B-kZpSHmapgqEviRdDhISlXF-9W_jcP23Qdoht5wxY5gEnd2QftN8MtZ6lTFGdcn78BDrrY2-oIsKcU8X0W6QLoo6-N2GrpqfnPoqxxCT6cG2tAx217g6bOnRxw86eqMveAi2aise6_B1RzrOVg32z90jq6fJcjxN5q_Ps_FwnnhQMiZgZKa1FblDLnPkuXDOIOYuL8Hy0rrCSm3QKYmFzjKmFDelkabUAhUyFD3y8Ov1iLjeB7-14bQ-3yW-ATFSWCk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic Sleep Stage Scoring Using Hilbert-Huang Transform with BP Neural Network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yuelei Liu ; Lanfeng Yan ; Bo Zeng ; Wei Wang</creator><creatorcontrib>Yuelei Liu ; Lanfeng Yan ; Bo Zeng ; Wei Wang</creatorcontrib><description>In this paper, a novel method based on Hilbert-Huang Transform (HHT) and backpropagation (BP) neural network is proposed to perform automatic sleep stages classification. Features extracted from 30-second epoch of EEG using HHT are good representations of EEG signal. A three-layer BP neural network is employed to classify these features to one appropriate stage. For a four-stage classification, consisting of Awake, Stage 1 + REM, Stage 2 and slow wave stage (SWS), of one single Pz-Oz channel EEG signal alone from 7 human subjects, the average stage recognition rate of the proposed method can achieve Awake 95.2%, Stage 1+Rem 87.1%, Stage 2 82.0%, SWS 92.9%. The experiment results show the method is effective and promising in automatic sleep states classification. It can be a powerful tool in sleep quality monitoring and sleep-related diseases diagnosis.</description><identifier>ISSN: 2151-7614</identifier><identifier>ISBN: 9781424447121</identifier><identifier>ISBN: 1424447127</identifier><identifier>EISSN: 2151-7622</identifier><identifier>EISBN: 9781424447138</identifier><identifier>EISBN: 1424447135</identifier><identifier>DOI: 10.1109/ICBBE.2010.5516372</identifier><identifier>LCCN: 2009905186</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Diseases ; Electroencephalography ; Feature extraction ; Hospitals ; Information science ; Low voltage ; Neural networks ; Sleep ; Time frequency analysis</subject><ispartof>2010 4th International Conference on Bioinformatics and Biomedical Engineering, 2010, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5516372$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5516372$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuelei Liu</creatorcontrib><creatorcontrib>Lanfeng Yan</creatorcontrib><creatorcontrib>Bo Zeng</creatorcontrib><creatorcontrib>Wei Wang</creatorcontrib><title>Automatic Sleep Stage Scoring Using Hilbert-Huang Transform with BP Neural Network</title><title>2010 4th International Conference on Bioinformatics and Biomedical Engineering</title><addtitle>ICBBE</addtitle><description>In this paper, a novel method based on Hilbert-Huang Transform (HHT) and backpropagation (BP) neural network is proposed to perform automatic sleep stages classification. Features extracted from 30-second epoch of EEG using HHT are good representations of EEG signal. A three-layer BP neural network is employed to classify these features to one appropriate stage. For a four-stage classification, consisting of Awake, Stage 1 + REM, Stage 2 and slow wave stage (SWS), of one single Pz-Oz channel EEG signal alone from 7 human subjects, the average stage recognition rate of the proposed method can achieve Awake 95.2%, Stage 1+Rem 87.1%, Stage 2 82.0%, SWS 92.9%. The experiment results show the method is effective and promising in automatic sleep states classification. It can be a powerful tool in sleep quality monitoring and sleep-related diseases diagnosis.</description><subject>Data mining</subject><subject>Diseases</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Hospitals</subject><subject>Information science</subject><subject>Low voltage</subject><subject>Neural networks</subject><subject>Sleep</subject><subject>Time frequency analysis</subject><issn>2151-7614</issn><issn>2151-7622</issn><isbn>9781424447121</isbn><isbn>1424447127</isbn><isbn>9781424447138</isbn><isbn>1424447135</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1OAjEUhesPiYi8gG76AoO97XTaLoGgkBA1AmvSmbnF6sCQTgnh7R0jMXFzTr6c5FscQu6BDQCYeZyNR6PJgLOWpYRMKH5B-kZpSHmapgqEviRdDhISlXF-9W_jcP23Qdoht5wxY5gEnd2QftN8MtZ6lTFGdcn78BDrrY2-oIsKcU8X0W6QLoo6-N2GrpqfnPoqxxCT6cG2tAx217g6bOnRxw86eqMveAi2aise6_B1RzrOVg32z90jq6fJcjxN5q_Ps_FwnnhQMiZgZKa1FblDLnPkuXDOIOYuL8Hy0rrCSm3QKYmFzjKmFDelkabUAhUyFD3y8Ov1iLjeB7-14bQ-3yW-ATFSWCk</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Yuelei Liu</creator><creator>Lanfeng Yan</creator><creator>Bo Zeng</creator><creator>Wei Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201006</creationdate><title>Automatic Sleep Stage Scoring Using Hilbert-Huang Transform with BP Neural Network</title><author>Yuelei Liu ; Lanfeng Yan ; Bo Zeng ; Wei Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-195688a3bfe25be2b3ff9eebfbd1a2dafca589ef75ec86607729d959d83e7e0e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Data mining</topic><topic>Diseases</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Hospitals</topic><topic>Information science</topic><topic>Low voltage</topic><topic>Neural networks</topic><topic>Sleep</topic><topic>Time frequency analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Yuelei Liu</creatorcontrib><creatorcontrib>Lanfeng Yan</creatorcontrib><creatorcontrib>Bo Zeng</creatorcontrib><creatorcontrib>Wei Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuelei Liu</au><au>Lanfeng Yan</au><au>Bo Zeng</au><au>Wei Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic Sleep Stage Scoring Using Hilbert-Huang Transform with BP Neural Network</atitle><btitle>2010 4th International Conference on Bioinformatics and Biomedical Engineering</btitle><stitle>ICBBE</stitle><date>2010-06</date><risdate>2010</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2151-7614</issn><eissn>2151-7622</eissn><isbn>9781424447121</isbn><isbn>1424447127</isbn><eisbn>9781424447138</eisbn><eisbn>1424447135</eisbn><abstract>In this paper, a novel method based on Hilbert-Huang Transform (HHT) and backpropagation (BP) neural network is proposed to perform automatic sleep stages classification. Features extracted from 30-second epoch of EEG using HHT are good representations of EEG signal. A three-layer BP neural network is employed to classify these features to one appropriate stage. For a four-stage classification, consisting of Awake, Stage 1 + REM, Stage 2 and slow wave stage (SWS), of one single Pz-Oz channel EEG signal alone from 7 human subjects, the average stage recognition rate of the proposed method can achieve Awake 95.2%, Stage 1+Rem 87.1%, Stage 2 82.0%, SWS 92.9%. The experiment results show the method is effective and promising in automatic sleep states classification. It can be a powerful tool in sleep quality monitoring and sleep-related diseases diagnosis.</abstract><pub>IEEE</pub><doi>10.1109/ICBBE.2010.5516372</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2151-7614
ispartof 2010 4th International Conference on Bioinformatics and Biomedical Engineering, 2010, p.1-4
issn 2151-7614
2151-7622
language eng
recordid cdi_ieee_primary_5516372
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Data mining
Diseases
Electroencephalography
Feature extraction
Hospitals
Information science
Low voltage
Neural networks
Sleep
Time frequency analysis
title Automatic Sleep Stage Scoring Using Hilbert-Huang Transform with BP Neural Network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20Sleep%20Stage%20Scoring%20Using%20Hilbert-Huang%20Transform%20with%20BP%20Neural%20Network&rft.btitle=2010%204th%20International%20Conference%20on%20Bioinformatics%20and%20Biomedical%20Engineering&rft.au=Yuelei%20Liu&rft.date=2010-06&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2151-7614&rft.eissn=2151-7622&rft.isbn=9781424447121&rft.isbn_list=1424447127&rft_id=info:doi/10.1109/ICBBE.2010.5516372&rft_dat=%3Cieee_6IE%3E5516372%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424447138&rft.eisbn_list=1424447135&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5516372&rfr_iscdi=true