Automatic Sleep Stage Scoring Using Hilbert-Huang Transform with BP Neural Network
In this paper, a novel method based on Hilbert-Huang Transform (HHT) and backpropagation (BP) neural network is proposed to perform automatic sleep stages classification. Features extracted from 30-second epoch of EEG using HHT are good representations of EEG signal. A three-layer BP neural network...
Gespeichert in:
Hauptverfasser: | , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 4 |
---|---|
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | Yuelei Liu Lanfeng Yan Bo Zeng Wei Wang |
description | In this paper, a novel method based on Hilbert-Huang Transform (HHT) and backpropagation (BP) neural network is proposed to perform automatic sleep stages classification. Features extracted from 30-second epoch of EEG using HHT are good representations of EEG signal. A three-layer BP neural network is employed to classify these features to one appropriate stage. For a four-stage classification, consisting of Awake, Stage 1 + REM, Stage 2 and slow wave stage (SWS), of one single Pz-Oz channel EEG signal alone from 7 human subjects, the average stage recognition rate of the proposed method can achieve Awake 95.2%, Stage 1+Rem 87.1%, Stage 2 82.0%, SWS 92.9%. The experiment results show the method is effective and promising in automatic sleep states classification. It can be a powerful tool in sleep quality monitoring and sleep-related diseases diagnosis. |
doi_str_mv | 10.1109/ICBBE.2010.5516372 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5516372</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5516372</ieee_id><sourcerecordid>5516372</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-195688a3bfe25be2b3ff9eebfbd1a2dafca589ef75ec86607729d959d83e7e0e3</originalsourceid><addsrcrecordid>eNpVkM1OAjEUhesPiYi8gG76AoO97XTaLoGgkBA1AmvSmbnF6sCQTgnh7R0jMXFzTr6c5FscQu6BDQCYeZyNR6PJgLOWpYRMKH5B-kZpSHmapgqEviRdDhISlXF-9W_jcP23Qdoht5wxY5gEnd2QftN8MtZ6lTFGdcn78BDrrY2-oIsKcU8X0W6QLoo6-N2GrpqfnPoqxxCT6cG2tAx217g6bOnRxw86eqMveAi2aise6_B1RzrOVg32z90jq6fJcjxN5q_Ps_FwnnhQMiZgZKa1FblDLnPkuXDOIOYuL8Hy0rrCSm3QKYmFzjKmFDelkabUAhUyFD3y8Ov1iLjeB7-14bQ-3yW-ATFSWCk</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Automatic Sleep Stage Scoring Using Hilbert-Huang Transform with BP Neural Network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yuelei Liu ; Lanfeng Yan ; Bo Zeng ; Wei Wang</creator><creatorcontrib>Yuelei Liu ; Lanfeng Yan ; Bo Zeng ; Wei Wang</creatorcontrib><description>In this paper, a novel method based on Hilbert-Huang Transform (HHT) and backpropagation (BP) neural network is proposed to perform automatic sleep stages classification. Features extracted from 30-second epoch of EEG using HHT are good representations of EEG signal. A three-layer BP neural network is employed to classify these features to one appropriate stage. For a four-stage classification, consisting of Awake, Stage 1 + REM, Stage 2 and slow wave stage (SWS), of one single Pz-Oz channel EEG signal alone from 7 human subjects, the average stage recognition rate of the proposed method can achieve Awake 95.2%, Stage 1+Rem 87.1%, Stage 2 82.0%, SWS 92.9%. The experiment results show the method is effective and promising in automatic sleep states classification. It can be a powerful tool in sleep quality monitoring and sleep-related diseases diagnosis.</description><identifier>ISSN: 2151-7614</identifier><identifier>ISBN: 9781424447121</identifier><identifier>ISBN: 1424447127</identifier><identifier>EISSN: 2151-7622</identifier><identifier>EISBN: 9781424447138</identifier><identifier>EISBN: 1424447135</identifier><identifier>DOI: 10.1109/ICBBE.2010.5516372</identifier><identifier>LCCN: 2009905186</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data mining ; Diseases ; Electroencephalography ; Feature extraction ; Hospitals ; Information science ; Low voltage ; Neural networks ; Sleep ; Time frequency analysis</subject><ispartof>2010 4th International Conference on Bioinformatics and Biomedical Engineering, 2010, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5516372$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5516372$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yuelei Liu</creatorcontrib><creatorcontrib>Lanfeng Yan</creatorcontrib><creatorcontrib>Bo Zeng</creatorcontrib><creatorcontrib>Wei Wang</creatorcontrib><title>Automatic Sleep Stage Scoring Using Hilbert-Huang Transform with BP Neural Network</title><title>2010 4th International Conference on Bioinformatics and Biomedical Engineering</title><addtitle>ICBBE</addtitle><description>In this paper, a novel method based on Hilbert-Huang Transform (HHT) and backpropagation (BP) neural network is proposed to perform automatic sleep stages classification. Features extracted from 30-second epoch of EEG using HHT are good representations of EEG signal. A three-layer BP neural network is employed to classify these features to one appropriate stage. For a four-stage classification, consisting of Awake, Stage 1 + REM, Stage 2 and slow wave stage (SWS), of one single Pz-Oz channel EEG signal alone from 7 human subjects, the average stage recognition rate of the proposed method can achieve Awake 95.2%, Stage 1+Rem 87.1%, Stage 2 82.0%, SWS 92.9%. The experiment results show the method is effective and promising in automatic sleep states classification. It can be a powerful tool in sleep quality monitoring and sleep-related diseases diagnosis.</description><subject>Data mining</subject><subject>Diseases</subject><subject>Electroencephalography</subject><subject>Feature extraction</subject><subject>Hospitals</subject><subject>Information science</subject><subject>Low voltage</subject><subject>Neural networks</subject><subject>Sleep</subject><subject>Time frequency analysis</subject><issn>2151-7614</issn><issn>2151-7622</issn><isbn>9781424447121</isbn><isbn>1424447127</isbn><isbn>9781424447138</isbn><isbn>1424447135</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkM1OAjEUhesPiYi8gG76AoO97XTaLoGgkBA1AmvSmbnF6sCQTgnh7R0jMXFzTr6c5FscQu6BDQCYeZyNR6PJgLOWpYRMKH5B-kZpSHmapgqEviRdDhISlXF-9W_jcP23Qdoht5wxY5gEnd2QftN8MtZ6lTFGdcn78BDrrY2-oIsKcU8X0W6QLoo6-N2GrpqfnPoqxxCT6cG2tAx217g6bOnRxw86eqMveAi2aise6_B1RzrOVg32z90jq6fJcjxN5q_Ps_FwnnhQMiZgZKa1FblDLnPkuXDOIOYuL8Hy0rrCSm3QKYmFzjKmFDelkabUAhUyFD3y8Ov1iLjeB7-14bQ-3yW-ATFSWCk</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Yuelei Liu</creator><creator>Lanfeng Yan</creator><creator>Bo Zeng</creator><creator>Wei Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201006</creationdate><title>Automatic Sleep Stage Scoring Using Hilbert-Huang Transform with BP Neural Network</title><author>Yuelei Liu ; Lanfeng Yan ; Bo Zeng ; Wei Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-195688a3bfe25be2b3ff9eebfbd1a2dafca589ef75ec86607729d959d83e7e0e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Data mining</topic><topic>Diseases</topic><topic>Electroencephalography</topic><topic>Feature extraction</topic><topic>Hospitals</topic><topic>Information science</topic><topic>Low voltage</topic><topic>Neural networks</topic><topic>Sleep</topic><topic>Time frequency analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Yuelei Liu</creatorcontrib><creatorcontrib>Lanfeng Yan</creatorcontrib><creatorcontrib>Bo Zeng</creatorcontrib><creatorcontrib>Wei Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yuelei Liu</au><au>Lanfeng Yan</au><au>Bo Zeng</au><au>Wei Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Automatic Sleep Stage Scoring Using Hilbert-Huang Transform with BP Neural Network</atitle><btitle>2010 4th International Conference on Bioinformatics and Biomedical Engineering</btitle><stitle>ICBBE</stitle><date>2010-06</date><risdate>2010</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><issn>2151-7614</issn><eissn>2151-7622</eissn><isbn>9781424447121</isbn><isbn>1424447127</isbn><eisbn>9781424447138</eisbn><eisbn>1424447135</eisbn><abstract>In this paper, a novel method based on Hilbert-Huang Transform (HHT) and backpropagation (BP) neural network is proposed to perform automatic sleep stages classification. Features extracted from 30-second epoch of EEG using HHT are good representations of EEG signal. A three-layer BP neural network is employed to classify these features to one appropriate stage. For a four-stage classification, consisting of Awake, Stage 1 + REM, Stage 2 and slow wave stage (SWS), of one single Pz-Oz channel EEG signal alone from 7 human subjects, the average stage recognition rate of the proposed method can achieve Awake 95.2%, Stage 1+Rem 87.1%, Stage 2 82.0%, SWS 92.9%. The experiment results show the method is effective and promising in automatic sleep states classification. It can be a powerful tool in sleep quality monitoring and sleep-related diseases diagnosis.</abstract><pub>IEEE</pub><doi>10.1109/ICBBE.2010.5516372</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2151-7614 |
ispartof | 2010 4th International Conference on Bioinformatics and Biomedical Engineering, 2010, p.1-4 |
issn | 2151-7614 2151-7622 |
language | eng |
recordid | cdi_ieee_primary_5516372 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Data mining Diseases Electroencephalography Feature extraction Hospitals Information science Low voltage Neural networks Sleep Time frequency analysis |
title | Automatic Sleep Stage Scoring Using Hilbert-Huang Transform with BP Neural Network |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T16%3A44%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Automatic%20Sleep%20Stage%20Scoring%20Using%20Hilbert-Huang%20Transform%20with%20BP%20Neural%20Network&rft.btitle=2010%204th%20International%20Conference%20on%20Bioinformatics%20and%20Biomedical%20Engineering&rft.au=Yuelei%20Liu&rft.date=2010-06&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.issn=2151-7614&rft.eissn=2151-7622&rft.isbn=9781424447121&rft.isbn_list=1424447127&rft_id=info:doi/10.1109/ICBBE.2010.5516372&rft_dat=%3Cieee_6IE%3E5516372%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424447138&rft.eisbn_list=1424447135&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5516372&rfr_iscdi=true |