Filtering For Discrete Fuzzy Stochastic Systems With Sensor Nonlinearities

This paper deals with the filtering problem for discrete-time fuzzy stochastic systems with sensor nonlinearities. There exist time-varying parameter uncertainties and random noise depending on state and external-disturbance. The characteristic of nonlinear sensor is handled by a decomposition metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on fuzzy systems 2010-10, Vol.18 (5), p.971-978
Hauptverfasser: Yugang Niu, Ho, Daniel W C, Li, C W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 978
container_issue 5
container_start_page 971
container_title IEEE transactions on fuzzy systems
container_volume 18
creator Yugang Niu
Ho, Daniel W C
Li, C W
description This paper deals with the filtering problem for discrete-time fuzzy stochastic systems with sensor nonlinearities. There exist time-varying parameter uncertainties and random noise depending on state and external-disturbance. The characteristic of nonlinear sensor is handled by a decomposition method. By means of the parallel distributed compensation technique, the design method of the robust H_ filter is presented. Sufficient conditions for the stochastic stability of the filtering error systems are derived such that the filter parameters can be explicitly obtained. Simulation results are given to illustrate the proposed method.
doi_str_mv 10.1109/TFUZZ.2010.2060203
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_5512637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5512637</ieee_id><sourcerecordid>831158695</sourcerecordid><originalsourceid>FETCH-LOGICAL-c327t-6edf7ed1c6899f5557ec86e78e46b2adeb4925e64e8305ef4cf1e7f8f5bf087c3</originalsourceid><addsrcrecordid>eNpdkMtOwkAUhidGExF9Ad00ceGqOJfOpUuD1kuILoCYsGnKcEaGlBZnpgt4egchLlydc5LvP_nzIXRN8IAQnN9PiulsNqA43hQLTDE7QT2SZyTFmGWncceCpUJicY4uvF9hTDJOVA-9FbYO4GzzlRStSx6t1w4CJEW3222TcWj1svLB6mS89QHWPvm0YZmMofGRfm-b2jZQORss-Et0Zqraw9Vx9tG0eJoMX9LRx_Pr8GGUakZlSAUsjIQF0ULlueGcS9BKgFSQiTmtFjDPcspBZKAY5mAybQhIowyfG6ykZn10d_i7ce13Bz6U69ga6rpqoO18qRghXImcR_L2H7lqO9fEciXBDBOqqKSRogdKu9Z7B6bcOLuu3DZC5d5u-Wu33Nstj3Zj6OYQsgDwF-CcUMEk-wHrV3a4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1030128272</pqid></control><display><type>article</type><title>Filtering For Discrete Fuzzy Stochastic Systems With Sensor Nonlinearities</title><source>IEEE Electronic Library (IEL)</source><creator>Yugang Niu ; Ho, Daniel W C ; Li, C W</creator><creatorcontrib>Yugang Niu ; Ho, Daniel W C ; Li, C W</creatorcontrib><description>This paper deals with the filtering problem for discrete-time fuzzy stochastic systems with sensor nonlinearities. There exist time-varying parameter uncertainties and random noise depending on state and external-disturbance. The characteristic of nonlinear sensor is handled by a decomposition method. By means of the parallel distributed compensation technique, the design method of the robust H_ filter is presented. Sufficient conditions for the stochastic stability of the filtering error systems are derived such that the filter parameters can be explicitly obtained. Simulation results are given to illustrate the proposed method.</description><identifier>ISSN: 1063-6706</identifier><identifier>EISSN: 1941-0034</identifier><identifier>DOI: 10.1109/TFUZZ.2010.2060203</identifier><identifier>CODEN: IEFSEV</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Compensation ; Design methodology ; External disturbance ; Filtering ; Filters ; Filtration ; Fuzzy ; Fuzzy logic ; Fuzzy set theory ; fuzzy stochastic systems ; Fuzzy systems ; Noise robustness ; Nonlinearity ; sensor nonlinearities ; Sensor phenomena and characterization ; Sensor systems ; Sensors ; Stochastic systems ; Sufficient conditions ; Uncertain systems</subject><ispartof>IEEE transactions on fuzzy systems, 2010-10, Vol.18 (5), p.971-978</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Oct 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c327t-6edf7ed1c6899f5557ec86e78e46b2adeb4925e64e8305ef4cf1e7f8f5bf087c3</citedby><cites>FETCH-LOGICAL-c327t-6edf7ed1c6899f5557ec86e78e46b2adeb4925e64e8305ef4cf1e7f8f5bf087c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5512637$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54737</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5512637$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yugang Niu</creatorcontrib><creatorcontrib>Ho, Daniel W C</creatorcontrib><creatorcontrib>Li, C W</creatorcontrib><title>Filtering For Discrete Fuzzy Stochastic Systems With Sensor Nonlinearities</title><title>IEEE transactions on fuzzy systems</title><addtitle>TFUZZ</addtitle><description>This paper deals with the filtering problem for discrete-time fuzzy stochastic systems with sensor nonlinearities. There exist time-varying parameter uncertainties and random noise depending on state and external-disturbance. The characteristic of nonlinear sensor is handled by a decomposition method. By means of the parallel distributed compensation technique, the design method of the robust H_ filter is presented. Sufficient conditions for the stochastic stability of the filtering error systems are derived such that the filter parameters can be explicitly obtained. Simulation results are given to illustrate the proposed method.</description><subject>Compensation</subject><subject>Design methodology</subject><subject>External disturbance</subject><subject>Filtering</subject><subject>Filters</subject><subject>Filtration</subject><subject>Fuzzy</subject><subject>Fuzzy logic</subject><subject>Fuzzy set theory</subject><subject>fuzzy stochastic systems</subject><subject>Fuzzy systems</subject><subject>Noise robustness</subject><subject>Nonlinearity</subject><subject>sensor nonlinearities</subject><subject>Sensor phenomena and characterization</subject><subject>Sensor systems</subject><subject>Sensors</subject><subject>Stochastic systems</subject><subject>Sufficient conditions</subject><subject>Uncertain systems</subject><issn>1063-6706</issn><issn>1941-0034</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpdkMtOwkAUhidGExF9Ad00ceGqOJfOpUuD1kuILoCYsGnKcEaGlBZnpgt4egchLlydc5LvP_nzIXRN8IAQnN9PiulsNqA43hQLTDE7QT2SZyTFmGWncceCpUJicY4uvF9hTDJOVA-9FbYO4GzzlRStSx6t1w4CJEW3222TcWj1svLB6mS89QHWPvm0YZmMofGRfm-b2jZQORss-Et0Zqraw9Vx9tG0eJoMX9LRx_Pr8GGUakZlSAUsjIQF0ULlueGcS9BKgFSQiTmtFjDPcspBZKAY5mAybQhIowyfG6ykZn10d_i7ce13Bz6U69ga6rpqoO18qRghXImcR_L2H7lqO9fEciXBDBOqqKSRogdKu9Z7B6bcOLuu3DZC5d5u-Wu33Nstj3Zj6OYQsgDwF-CcUMEk-wHrV3a4</recordid><startdate>201010</startdate><enddate>201010</enddate><creator>Yugang Niu</creator><creator>Ho, Daniel W C</creator><creator>Li, C W</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7SP</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>201010</creationdate><title>Filtering For Discrete Fuzzy Stochastic Systems With Sensor Nonlinearities</title><author>Yugang Niu ; Ho, Daniel W C ; Li, C W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c327t-6edf7ed1c6899f5557ec86e78e46b2adeb4925e64e8305ef4cf1e7f8f5bf087c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Compensation</topic><topic>Design methodology</topic><topic>External disturbance</topic><topic>Filtering</topic><topic>Filters</topic><topic>Filtration</topic><topic>Fuzzy</topic><topic>Fuzzy logic</topic><topic>Fuzzy set theory</topic><topic>fuzzy stochastic systems</topic><topic>Fuzzy systems</topic><topic>Noise robustness</topic><topic>Nonlinearity</topic><topic>sensor nonlinearities</topic><topic>Sensor phenomena and characterization</topic><topic>Sensor systems</topic><topic>Sensors</topic><topic>Stochastic systems</topic><topic>Sufficient conditions</topic><topic>Uncertain systems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yugang Niu</creatorcontrib><creatorcontrib>Ho, Daniel W C</creatorcontrib><creatorcontrib>Li, C W</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on fuzzy systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yugang Niu</au><au>Ho, Daniel W C</au><au>Li, C W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Filtering For Discrete Fuzzy Stochastic Systems With Sensor Nonlinearities</atitle><jtitle>IEEE transactions on fuzzy systems</jtitle><stitle>TFUZZ</stitle><date>2010-10</date><risdate>2010</risdate><volume>18</volume><issue>5</issue><spage>971</spage><epage>978</epage><pages>971-978</pages><issn>1063-6706</issn><eissn>1941-0034</eissn><coden>IEFSEV</coden><abstract>This paper deals with the filtering problem for discrete-time fuzzy stochastic systems with sensor nonlinearities. There exist time-varying parameter uncertainties and random noise depending on state and external-disturbance. The characteristic of nonlinear sensor is handled by a decomposition method. By means of the parallel distributed compensation technique, the design method of the robust H_ filter is presented. Sufficient conditions for the stochastic stability of the filtering error systems are derived such that the filter parameters can be explicitly obtained. Simulation results are given to illustrate the proposed method.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TFUZZ.2010.2060203</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1063-6706
ispartof IEEE transactions on fuzzy systems, 2010-10, Vol.18 (5), p.971-978
issn 1063-6706
1941-0034
language eng
recordid cdi_ieee_primary_5512637
source IEEE Electronic Library (IEL)
subjects Compensation
Design methodology
External disturbance
Filtering
Filters
Filtration
Fuzzy
Fuzzy logic
Fuzzy set theory
fuzzy stochastic systems
Fuzzy systems
Noise robustness
Nonlinearity
sensor nonlinearities
Sensor phenomena and characterization
Sensor systems
Sensors
Stochastic systems
Sufficient conditions
Uncertain systems
title Filtering For Discrete Fuzzy Stochastic Systems With Sensor Nonlinearities
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T11%3A57%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Filtering%20For%20Discrete%20Fuzzy%20Stochastic%20Systems%20With%20Sensor%20Nonlinearities&rft.jtitle=IEEE%20transactions%20on%20fuzzy%20systems&rft.au=Yugang%20Niu&rft.date=2010-10&rft.volume=18&rft.issue=5&rft.spage=971&rft.epage=978&rft.pages=971-978&rft.issn=1063-6706&rft.eissn=1941-0034&rft.coden=IEFSEV&rft_id=info:doi/10.1109/TFUZZ.2010.2060203&rft_dat=%3Cproquest_RIE%3E831158695%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1030128272&rft_id=info:pmid/&rft_ieee_id=5512637&rfr_iscdi=true