Estimating the fundamental matrix based on the actual distance

The estimation of fundamental matrix is a key problem in computer vision and also the basis of active vision. A new linear iterative algorithm for estimating the fundamental matrix has been presented. The algorithm is based on minimizing the actual distances between the projection points and their m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Jiu-long Xiong, Qi Zhang, Junying Xia, Xiaoquan Xu, Cunbao Lin, Feilu Luo
Format: Tagungsbericht
Sprache:eng ; jpn
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1963
container_issue
container_start_page 1958
container_title
container_volume
creator Jiu-long Xiong
Qi Zhang
Junying Xia
Xiaoquan Xu
Cunbao Lin
Feilu Luo
description The estimation of fundamental matrix is a key problem in computer vision and also the basis of active vision. A new linear iterative algorithm for estimating the fundamental matrix has been presented. The algorithm is based on minimizing the actual distances between the projection points and their matched epipolar lines. The first two fundamental matrixes are computed with the information of images from two cameras, respectively. The final rank-2 fundamental matrix is gained by a certain combination of these two matrixes. The results of experiment with real images show that the algorithm improves the precision and robustness.
doi_str_mv 10.1109/ICINFA.2010.5512493
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5512493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5512493</ieee_id><sourcerecordid>5512493</sourcerecordid><originalsourceid>FETCH-LOGICAL-i156t-308c9009925514e270bb2b14d8a4e7544f721c0707d70c177f5d8eb8f3f26c373</originalsourceid><addsrcrecordid>eNo1j81OwzAQhI1QJWjJE_SSF2hZ2-tsfEGqopZGquAC58rxDxi1AcWuBG9PgLKX0c5Io28Ym3NYcg76tm3ah81qKWA0lOICtbxghaaao0BUBKgu2fT_4TRhUwGgNQIIvGJFSm8wHiohoLpmd-uU49Hk2L-U-dWX4dQ7c_R9NodytIf4WXYmeVe-97-5sfk0Ri6mbHrrb9gkmEPyxVln7Hmzfmq2i93jfdusdovIVZUXEmqrfyjEiIxeEHSd6Di62qAnhRhIcAsE5AgsJwrK1b6rgwyispLkjM3_eqP3fv8xjMjD1_68X34DlSVLLA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Estimating the fundamental matrix based on the actual distance</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jiu-long Xiong ; Qi Zhang ; Junying Xia ; Xiaoquan Xu ; Cunbao Lin ; Feilu Luo</creator><creatorcontrib>Jiu-long Xiong ; Qi Zhang ; Junying Xia ; Xiaoquan Xu ; Cunbao Lin ; Feilu Luo</creatorcontrib><description>The estimation of fundamental matrix is a key problem in computer vision and also the basis of active vision. A new linear iterative algorithm for estimating the fundamental matrix has been presented. The algorithm is based on minimizing the actual distances between the projection points and their matched epipolar lines. The first two fundamental matrixes are computed with the information of images from two cameras, respectively. The final rank-2 fundamental matrix is gained by a certain combination of these two matrixes. The results of experiment with real images show that the algorithm improves the precision and robustness.</description><identifier>ISBN: 1424457017</identifier><identifier>ISBN: 9781424457014</identifier><identifier>EISBN: 9781424457045</identifier><identifier>EISBN: 1424457041</identifier><identifier>EISBN: 9781424457021</identifier><identifier>EISBN: 1424457025</identifier><identifier>DOI: 10.1109/ICINFA.2010.5512493</identifier><identifier>LCCN: 2009940024</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Automation ; Cameras ; Computer vision ; Epipolar geometry ; Equations ; Fundamental matrix ; Geometry ; Iterative algorithms ; Linear estimation ; Linear iterative algorithm ; Matrices ; Matrix decomposition ; Pixel ; Robustness</subject><ispartof>The 2010 IEEE International Conference on Information and Automation, 2010, p.1958-1963</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5512493$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5512493$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiu-long Xiong</creatorcontrib><creatorcontrib>Qi Zhang</creatorcontrib><creatorcontrib>Junying Xia</creatorcontrib><creatorcontrib>Xiaoquan Xu</creatorcontrib><creatorcontrib>Cunbao Lin</creatorcontrib><creatorcontrib>Feilu Luo</creatorcontrib><title>Estimating the fundamental matrix based on the actual distance</title><title>The 2010 IEEE International Conference on Information and Automation</title><addtitle>ICINFA</addtitle><description>The estimation of fundamental matrix is a key problem in computer vision and also the basis of active vision. A new linear iterative algorithm for estimating the fundamental matrix has been presented. The algorithm is based on minimizing the actual distances between the projection points and their matched epipolar lines. The first two fundamental matrixes are computed with the information of images from two cameras, respectively. The final rank-2 fundamental matrix is gained by a certain combination of these two matrixes. The results of experiment with real images show that the algorithm improves the precision and robustness.</description><subject>Automation</subject><subject>Cameras</subject><subject>Computer vision</subject><subject>Epipolar geometry</subject><subject>Equations</subject><subject>Fundamental matrix</subject><subject>Geometry</subject><subject>Iterative algorithms</subject><subject>Linear estimation</subject><subject>Linear iterative algorithm</subject><subject>Matrices</subject><subject>Matrix decomposition</subject><subject>Pixel</subject><subject>Robustness</subject><isbn>1424457017</isbn><isbn>9781424457014</isbn><isbn>9781424457045</isbn><isbn>1424457041</isbn><isbn>9781424457021</isbn><isbn>1424457025</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81OwzAQhI1QJWjJE_SSF2hZ2-tsfEGqopZGquAC58rxDxi1AcWuBG9PgLKX0c5Io28Ym3NYcg76tm3ah81qKWA0lOICtbxghaaao0BUBKgu2fT_4TRhUwGgNQIIvGJFSm8wHiohoLpmd-uU49Hk2L-U-dWX4dQ7c_R9NodytIf4WXYmeVe-97-5sfk0Ri6mbHrrb9gkmEPyxVln7Hmzfmq2i93jfdusdovIVZUXEmqrfyjEiIxeEHSd6Di62qAnhRhIcAsE5AgsJwrK1b6rgwyispLkjM3_eqP3fv8xjMjD1_68X34DlSVLLA</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Jiu-long Xiong</creator><creator>Qi Zhang</creator><creator>Junying Xia</creator><creator>Xiaoquan Xu</creator><creator>Cunbao Lin</creator><creator>Feilu Luo</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201006</creationdate><title>Estimating the fundamental matrix based on the actual distance</title><author>Jiu-long Xiong ; Qi Zhang ; Junying Xia ; Xiaoquan Xu ; Cunbao Lin ; Feilu Luo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i156t-308c9009925514e270bb2b14d8a4e7544f721c0707d70c177f5d8eb8f3f26c373</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2010</creationdate><topic>Automation</topic><topic>Cameras</topic><topic>Computer vision</topic><topic>Epipolar geometry</topic><topic>Equations</topic><topic>Fundamental matrix</topic><topic>Geometry</topic><topic>Iterative algorithms</topic><topic>Linear estimation</topic><topic>Linear iterative algorithm</topic><topic>Matrices</topic><topic>Matrix decomposition</topic><topic>Pixel</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiu-long Xiong</creatorcontrib><creatorcontrib>Qi Zhang</creatorcontrib><creatorcontrib>Junying Xia</creatorcontrib><creatorcontrib>Xiaoquan Xu</creatorcontrib><creatorcontrib>Cunbao Lin</creatorcontrib><creatorcontrib>Feilu Luo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiu-long Xiong</au><au>Qi Zhang</au><au>Junying Xia</au><au>Xiaoquan Xu</au><au>Cunbao Lin</au><au>Feilu Luo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Estimating the fundamental matrix based on the actual distance</atitle><btitle>The 2010 IEEE International Conference on Information and Automation</btitle><stitle>ICINFA</stitle><date>2010-06</date><risdate>2010</risdate><spage>1958</spage><epage>1963</epage><pages>1958-1963</pages><isbn>1424457017</isbn><isbn>9781424457014</isbn><eisbn>9781424457045</eisbn><eisbn>1424457041</eisbn><eisbn>9781424457021</eisbn><eisbn>1424457025</eisbn><abstract>The estimation of fundamental matrix is a key problem in computer vision and also the basis of active vision. A new linear iterative algorithm for estimating the fundamental matrix has been presented. The algorithm is based on minimizing the actual distances between the projection points and their matched epipolar lines. The first two fundamental matrixes are computed with the information of images from two cameras, respectively. The final rank-2 fundamental matrix is gained by a certain combination of these two matrixes. The results of experiment with real images show that the algorithm improves the precision and robustness.</abstract><pub>IEEE</pub><doi>10.1109/ICINFA.2010.5512493</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424457017
ispartof The 2010 IEEE International Conference on Information and Automation, 2010, p.1958-1963
issn
language eng ; jpn
recordid cdi_ieee_primary_5512493
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Automation
Cameras
Computer vision
Epipolar geometry
Equations
Fundamental matrix
Geometry
Iterative algorithms
Linear estimation
Linear iterative algorithm
Matrices
Matrix decomposition
Pixel
Robustness
title Estimating the fundamental matrix based on the actual distance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Estimating%20the%20fundamental%20matrix%20based%20on%20the%20actual%20distance&rft.btitle=The%202010%20IEEE%20International%20Conference%20on%20Information%20and%20Automation&rft.au=Jiu-long%20Xiong&rft.date=2010-06&rft.spage=1958&rft.epage=1963&rft.pages=1958-1963&rft.isbn=1424457017&rft.isbn_list=9781424457014&rft_id=info:doi/10.1109/ICINFA.2010.5512493&rft_dat=%3Cieee_6IE%3E5512493%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424457045&rft.eisbn_list=1424457041&rft.eisbn_list=9781424457021&rft.eisbn_list=1424457025&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5512493&rfr_iscdi=true