Estimating the fundamental matrix based on the actual distance
The estimation of fundamental matrix is a key problem in computer vision and also the basis of active vision. A new linear iterative algorithm for estimating the fundamental matrix has been presented. The algorithm is based on minimizing the actual distances between the projection points and their m...
Gespeichert in:
Hauptverfasser: | , , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng ; jpn |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1963 |
---|---|
container_issue | |
container_start_page | 1958 |
container_title | |
container_volume | |
creator | Jiu-long Xiong Qi Zhang Junying Xia Xiaoquan Xu Cunbao Lin Feilu Luo |
description | The estimation of fundamental matrix is a key problem in computer vision and also the basis of active vision. A new linear iterative algorithm for estimating the fundamental matrix has been presented. The algorithm is based on minimizing the actual distances between the projection points and their matched epipolar lines. The first two fundamental matrixes are computed with the information of images from two cameras, respectively. The final rank-2 fundamental matrix is gained by a certain combination of these two matrixes. The results of experiment with real images show that the algorithm improves the precision and robustness. |
doi_str_mv | 10.1109/ICINFA.2010.5512493 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5512493</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5512493</ieee_id><sourcerecordid>5512493</sourcerecordid><originalsourceid>FETCH-LOGICAL-i156t-308c9009925514e270bb2b14d8a4e7544f721c0707d70c177f5d8eb8f3f26c373</originalsourceid><addsrcrecordid>eNo1j81OwzAQhI1QJWjJE_SSF2hZ2-tsfEGqopZGquAC58rxDxi1AcWuBG9PgLKX0c5Io28Ym3NYcg76tm3ah81qKWA0lOICtbxghaaao0BUBKgu2fT_4TRhUwGgNQIIvGJFSm8wHiohoLpmd-uU49Hk2L-U-dWX4dQ7c_R9NodytIf4WXYmeVe-97-5sfk0Ri6mbHrrb9gkmEPyxVln7Hmzfmq2i93jfdusdovIVZUXEmqrfyjEiIxeEHSd6Di62qAnhRhIcAsE5AgsJwrK1b6rgwyispLkjM3_eqP3fv8xjMjD1_68X34DlSVLLA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Estimating the fundamental matrix based on the actual distance</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Jiu-long Xiong ; Qi Zhang ; Junying Xia ; Xiaoquan Xu ; Cunbao Lin ; Feilu Luo</creator><creatorcontrib>Jiu-long Xiong ; Qi Zhang ; Junying Xia ; Xiaoquan Xu ; Cunbao Lin ; Feilu Luo</creatorcontrib><description>The estimation of fundamental matrix is a key problem in computer vision and also the basis of active vision. A new linear iterative algorithm for estimating the fundamental matrix has been presented. The algorithm is based on minimizing the actual distances between the projection points and their matched epipolar lines. The first two fundamental matrixes are computed with the information of images from two cameras, respectively. The final rank-2 fundamental matrix is gained by a certain combination of these two matrixes. The results of experiment with real images show that the algorithm improves the precision and robustness.</description><identifier>ISBN: 1424457017</identifier><identifier>ISBN: 9781424457014</identifier><identifier>EISBN: 9781424457045</identifier><identifier>EISBN: 1424457041</identifier><identifier>EISBN: 9781424457021</identifier><identifier>EISBN: 1424457025</identifier><identifier>DOI: 10.1109/ICINFA.2010.5512493</identifier><identifier>LCCN: 2009940024</identifier><language>eng ; jpn</language><publisher>IEEE</publisher><subject>Automation ; Cameras ; Computer vision ; Epipolar geometry ; Equations ; Fundamental matrix ; Geometry ; Iterative algorithms ; Linear estimation ; Linear iterative algorithm ; Matrices ; Matrix decomposition ; Pixel ; Robustness</subject><ispartof>The 2010 IEEE International Conference on Information and Automation, 2010, p.1958-1963</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5512493$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5512493$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Jiu-long Xiong</creatorcontrib><creatorcontrib>Qi Zhang</creatorcontrib><creatorcontrib>Junying Xia</creatorcontrib><creatorcontrib>Xiaoquan Xu</creatorcontrib><creatorcontrib>Cunbao Lin</creatorcontrib><creatorcontrib>Feilu Luo</creatorcontrib><title>Estimating the fundamental matrix based on the actual distance</title><title>The 2010 IEEE International Conference on Information and Automation</title><addtitle>ICINFA</addtitle><description>The estimation of fundamental matrix is a key problem in computer vision and also the basis of active vision. A new linear iterative algorithm for estimating the fundamental matrix has been presented. The algorithm is based on minimizing the actual distances between the projection points and their matched epipolar lines. The first two fundamental matrixes are computed with the information of images from two cameras, respectively. The final rank-2 fundamental matrix is gained by a certain combination of these two matrixes. The results of experiment with real images show that the algorithm improves the precision and robustness.</description><subject>Automation</subject><subject>Cameras</subject><subject>Computer vision</subject><subject>Epipolar geometry</subject><subject>Equations</subject><subject>Fundamental matrix</subject><subject>Geometry</subject><subject>Iterative algorithms</subject><subject>Linear estimation</subject><subject>Linear iterative algorithm</subject><subject>Matrices</subject><subject>Matrix decomposition</subject><subject>Pixel</subject><subject>Robustness</subject><isbn>1424457017</isbn><isbn>9781424457014</isbn><isbn>9781424457045</isbn><isbn>1424457041</isbn><isbn>9781424457021</isbn><isbn>1424457025</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo1j81OwzAQhI1QJWjJE_SSF2hZ2-tsfEGqopZGquAC58rxDxi1AcWuBG9PgLKX0c5Io28Ym3NYcg76tm3ah81qKWA0lOICtbxghaaao0BUBKgu2fT_4TRhUwGgNQIIvGJFSm8wHiohoLpmd-uU49Hk2L-U-dWX4dQ7c_R9NodytIf4WXYmeVe-97-5sfk0Ri6mbHrrb9gkmEPyxVln7Hmzfmq2i93jfdusdovIVZUXEmqrfyjEiIxeEHSd6Di62qAnhRhIcAsE5AgsJwrK1b6rgwyispLkjM3_eqP3fv8xjMjD1_68X34DlSVLLA</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Jiu-long Xiong</creator><creator>Qi Zhang</creator><creator>Junying Xia</creator><creator>Xiaoquan Xu</creator><creator>Cunbao Lin</creator><creator>Feilu Luo</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201006</creationdate><title>Estimating the fundamental matrix based on the actual distance</title><author>Jiu-long Xiong ; Qi Zhang ; Junying Xia ; Xiaoquan Xu ; Cunbao Lin ; Feilu Luo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i156t-308c9009925514e270bb2b14d8a4e7544f721c0707d70c177f5d8eb8f3f26c373</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng ; jpn</language><creationdate>2010</creationdate><topic>Automation</topic><topic>Cameras</topic><topic>Computer vision</topic><topic>Epipolar geometry</topic><topic>Equations</topic><topic>Fundamental matrix</topic><topic>Geometry</topic><topic>Iterative algorithms</topic><topic>Linear estimation</topic><topic>Linear iterative algorithm</topic><topic>Matrices</topic><topic>Matrix decomposition</topic><topic>Pixel</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Jiu-long Xiong</creatorcontrib><creatorcontrib>Qi Zhang</creatorcontrib><creatorcontrib>Junying Xia</creatorcontrib><creatorcontrib>Xiaoquan Xu</creatorcontrib><creatorcontrib>Cunbao Lin</creatorcontrib><creatorcontrib>Feilu Luo</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Jiu-long Xiong</au><au>Qi Zhang</au><au>Junying Xia</au><au>Xiaoquan Xu</au><au>Cunbao Lin</au><au>Feilu Luo</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Estimating the fundamental matrix based on the actual distance</atitle><btitle>The 2010 IEEE International Conference on Information and Automation</btitle><stitle>ICINFA</stitle><date>2010-06</date><risdate>2010</risdate><spage>1958</spage><epage>1963</epage><pages>1958-1963</pages><isbn>1424457017</isbn><isbn>9781424457014</isbn><eisbn>9781424457045</eisbn><eisbn>1424457041</eisbn><eisbn>9781424457021</eisbn><eisbn>1424457025</eisbn><abstract>The estimation of fundamental matrix is a key problem in computer vision and also the basis of active vision. A new linear iterative algorithm for estimating the fundamental matrix has been presented. The algorithm is based on minimizing the actual distances between the projection points and their matched epipolar lines. The first two fundamental matrixes are computed with the information of images from two cameras, respectively. The final rank-2 fundamental matrix is gained by a certain combination of these two matrixes. The results of experiment with real images show that the algorithm improves the precision and robustness.</abstract><pub>IEEE</pub><doi>10.1109/ICINFA.2010.5512493</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 1424457017 |
ispartof | The 2010 IEEE International Conference on Information and Automation, 2010, p.1958-1963 |
issn | |
language | eng ; jpn |
recordid | cdi_ieee_primary_5512493 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Automation Cameras Computer vision Epipolar geometry Equations Fundamental matrix Geometry Iterative algorithms Linear estimation Linear iterative algorithm Matrices Matrix decomposition Pixel Robustness |
title | Estimating the fundamental matrix based on the actual distance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A16%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Estimating%20the%20fundamental%20matrix%20based%20on%20the%20actual%20distance&rft.btitle=The%202010%20IEEE%20International%20Conference%20on%20Information%20and%20Automation&rft.au=Jiu-long%20Xiong&rft.date=2010-06&rft.spage=1958&rft.epage=1963&rft.pages=1958-1963&rft.isbn=1424457017&rft.isbn_list=9781424457014&rft_id=info:doi/10.1109/ICINFA.2010.5512493&rft_dat=%3Cieee_6IE%3E5512493%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424457045&rft.eisbn_list=1424457041&rft.eisbn_list=9781424457021&rft.eisbn_list=1424457025&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5512493&rfr_iscdi=true |