Modeling and simulation of variable direction rotatable axis of variable vector propeller of submersible vehicle in vertical motion

Accurate modeling and simulation of submersible vehicle is essential for autonomous control and maneuverability research. In this paper, a variable direction rotatable axis of variable vector propeller (VDRA-VVP) is proposed and researched innovatively. The structure and working principle of VDRA-VV...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Sheng Liu, Dong Ren, Bing Li, Xucheng Chang, Yuchao Wang
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 211
container_issue
container_start_page 206
container_title
container_volume
creator Sheng Liu
Dong Ren
Bing Li
Xucheng Chang
Yuchao Wang
description Accurate modeling and simulation of submersible vehicle is essential for autonomous control and maneuverability research. In this paper, a variable direction rotatable axis of variable vector propeller (VDRA-VVP) is proposed and researched innovatively. The structure and working principle of VDRA-VVP of submersible vehicle are described and the nonlinear mathematic model of the submersible vehicle in spatial motion was derived based on momentum theorem. The forces acting on submersible vehicle were resolved to several modules which were expressed in matrix form. Based on the motion model and combined with three degrees of freedom model of vertical motion, a motion simulation system was constructed. Considering the characteristic of VDRA-VVP, the depth control and pitch angle control are simulated by adopting both robust PD control method and adaptive robust PD control method. The comparison result shows that the control effect of adaptive robust PD controller is obviously better than robust PD controller in vertical motion. The simulation results show that the VDRA-VVP of submersible vehicle has good spatial maneuverability, and verify the feasibility and reliability of control method.
doi_str_mv 10.1109/ICINFA.2010.5512364
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5512364</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5512364</ieee_id><sourcerecordid>5512364</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-d20f1e604c2a62e31eb81858a2a0ecda506c8062a543ba3c693ff9fe895947723</originalsourceid><addsrcrecordid>eNpVkE9PwkAQxdcYEgX5BFz6BcDZv-0eCRElQb1wJ9PtVNdsW7ItRM9-ccsfD8zlzfzeyzsMYxMOM87BPq4Wq7flfCagB1pzIY26YWObZlwJpXQKSt-y4f_B0wEbCgBrFYBQd2zctl_Qj9JCgLlnv69NQcHXHwnWRdL6ah-w802dNGVywOgxD5QUPpI70dh02J0Yfvv2KnToI01MdrHZUQgUj2a7zyuKrT_7n9716ut-jZ13GJKqObY-sEGJoaXxRUdss3zaLF6m6_fn1WK-nnoL3bQQUHIyoJxAI0hyyjOe6QwFArkCNRiXgRGolcxROmNlWdqSMqutSlMhR2xyrvVEtN1FX2H82V5-KP8A0FhmSA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Modeling and simulation of variable direction rotatable axis of variable vector propeller of submersible vehicle in vertical motion</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Sheng Liu ; Dong Ren ; Bing Li ; Xucheng Chang ; Yuchao Wang</creator><creatorcontrib>Sheng Liu ; Dong Ren ; Bing Li ; Xucheng Chang ; Yuchao Wang</creatorcontrib><description>Accurate modeling and simulation of submersible vehicle is essential for autonomous control and maneuverability research. In this paper, a variable direction rotatable axis of variable vector propeller (VDRA-VVP) is proposed and researched innovatively. The structure and working principle of VDRA-VVP of submersible vehicle are described and the nonlinear mathematic model of the submersible vehicle in spatial motion was derived based on momentum theorem. The forces acting on submersible vehicle were resolved to several modules which were expressed in matrix form. Based on the motion model and combined with three degrees of freedom model of vertical motion, a motion simulation system was constructed. Considering the characteristic of VDRA-VVP, the depth control and pitch angle control are simulated by adopting both robust PD control method and adaptive robust PD control method. The comparison result shows that the control effect of adaptive robust PD controller is obviously better than robust PD controller in vertical motion. The simulation results show that the VDRA-VVP of submersible vehicle has good spatial maneuverability, and verify the feasibility and reliability of control method.</description><identifier>ISBN: 1424457017</identifier><identifier>ISBN: 9781424457014</identifier><identifier>EISBN: 9781424457045</identifier><identifier>EISBN: 1424457041</identifier><identifier>EISBN: 9781424457021</identifier><identifier>EISBN: 1424457025</identifier><identifier>DOI: 10.1109/ICINFA.2010.5512364</identifier><identifier>LCCN: 2009940024</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive control ; dynamics model ; kinematics model ; Mathematics ; Mobile robots ; Motion control ; PD control ; Programmable control ; Propellers ; Remotely operated vehicles ; Robust control ; simulation ; Underwater vehicles ; VDRA-VVP ; vertical motion control</subject><ispartof>The 2010 IEEE International Conference on Information and Automation, 2010, p.206-211</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5512364$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,778,782,787,788,2054,27908,54903</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5512364$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Sheng Liu</creatorcontrib><creatorcontrib>Dong Ren</creatorcontrib><creatorcontrib>Bing Li</creatorcontrib><creatorcontrib>Xucheng Chang</creatorcontrib><creatorcontrib>Yuchao Wang</creatorcontrib><title>Modeling and simulation of variable direction rotatable axis of variable vector propeller of submersible vehicle in vertical motion</title><title>The 2010 IEEE International Conference on Information and Automation</title><addtitle>ICINFA</addtitle><description>Accurate modeling and simulation of submersible vehicle is essential for autonomous control and maneuverability research. In this paper, a variable direction rotatable axis of variable vector propeller (VDRA-VVP) is proposed and researched innovatively. The structure and working principle of VDRA-VVP of submersible vehicle are described and the nonlinear mathematic model of the submersible vehicle in spatial motion was derived based on momentum theorem. The forces acting on submersible vehicle were resolved to several modules which were expressed in matrix form. Based on the motion model and combined with three degrees of freedom model of vertical motion, a motion simulation system was constructed. Considering the characteristic of VDRA-VVP, the depth control and pitch angle control are simulated by adopting both robust PD control method and adaptive robust PD control method. The comparison result shows that the control effect of adaptive robust PD controller is obviously better than robust PD controller in vertical motion. The simulation results show that the VDRA-VVP of submersible vehicle has good spatial maneuverability, and verify the feasibility and reliability of control method.</description><subject>Adaptive control</subject><subject>dynamics model</subject><subject>kinematics model</subject><subject>Mathematics</subject><subject>Mobile robots</subject><subject>Motion control</subject><subject>PD control</subject><subject>Programmable control</subject><subject>Propellers</subject><subject>Remotely operated vehicles</subject><subject>Robust control</subject><subject>simulation</subject><subject>Underwater vehicles</subject><subject>VDRA-VVP</subject><subject>vertical motion control</subject><isbn>1424457017</isbn><isbn>9781424457014</isbn><isbn>9781424457045</isbn><isbn>1424457041</isbn><isbn>9781424457021</isbn><isbn>1424457025</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpVkE9PwkAQxdcYEgX5BFz6BcDZv-0eCRElQb1wJ9PtVNdsW7ItRM9-ccsfD8zlzfzeyzsMYxMOM87BPq4Wq7flfCagB1pzIY26YWObZlwJpXQKSt-y4f_B0wEbCgBrFYBQd2zctl_Qj9JCgLlnv69NQcHXHwnWRdL6ah-w802dNGVywOgxD5QUPpI70dh02J0Yfvv2KnToI01MdrHZUQgUj2a7zyuKrT_7n9716ut-jZ13GJKqObY-sEGJoaXxRUdss3zaLF6m6_fn1WK-nnoL3bQQUHIyoJxAI0hyyjOe6QwFArkCNRiXgRGolcxROmNlWdqSMqutSlMhR2xyrvVEtN1FX2H82V5-KP8A0FhmSA</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Sheng Liu</creator><creator>Dong Ren</creator><creator>Bing Li</creator><creator>Xucheng Chang</creator><creator>Yuchao Wang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201006</creationdate><title>Modeling and simulation of variable direction rotatable axis of variable vector propeller of submersible vehicle in vertical motion</title><author>Sheng Liu ; Dong Ren ; Bing Li ; Xucheng Chang ; Yuchao Wang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-d20f1e604c2a62e31eb81858a2a0ecda506c8062a543ba3c693ff9fe895947723</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adaptive control</topic><topic>dynamics model</topic><topic>kinematics model</topic><topic>Mathematics</topic><topic>Mobile robots</topic><topic>Motion control</topic><topic>PD control</topic><topic>Programmable control</topic><topic>Propellers</topic><topic>Remotely operated vehicles</topic><topic>Robust control</topic><topic>simulation</topic><topic>Underwater vehicles</topic><topic>VDRA-VVP</topic><topic>vertical motion control</topic><toplevel>online_resources</toplevel><creatorcontrib>Sheng Liu</creatorcontrib><creatorcontrib>Dong Ren</creatorcontrib><creatorcontrib>Bing Li</creatorcontrib><creatorcontrib>Xucheng Chang</creatorcontrib><creatorcontrib>Yuchao Wang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sheng Liu</au><au>Dong Ren</au><au>Bing Li</au><au>Xucheng Chang</au><au>Yuchao Wang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Modeling and simulation of variable direction rotatable axis of variable vector propeller of submersible vehicle in vertical motion</atitle><btitle>The 2010 IEEE International Conference on Information and Automation</btitle><stitle>ICINFA</stitle><date>2010-06</date><risdate>2010</risdate><spage>206</spage><epage>211</epage><pages>206-211</pages><isbn>1424457017</isbn><isbn>9781424457014</isbn><eisbn>9781424457045</eisbn><eisbn>1424457041</eisbn><eisbn>9781424457021</eisbn><eisbn>1424457025</eisbn><abstract>Accurate modeling and simulation of submersible vehicle is essential for autonomous control and maneuverability research. In this paper, a variable direction rotatable axis of variable vector propeller (VDRA-VVP) is proposed and researched innovatively. The structure and working principle of VDRA-VVP of submersible vehicle are described and the nonlinear mathematic model of the submersible vehicle in spatial motion was derived based on momentum theorem. The forces acting on submersible vehicle were resolved to several modules which were expressed in matrix form. Based on the motion model and combined with three degrees of freedom model of vertical motion, a motion simulation system was constructed. Considering the characteristic of VDRA-VVP, the depth control and pitch angle control are simulated by adopting both robust PD control method and adaptive robust PD control method. The comparison result shows that the control effect of adaptive robust PD controller is obviously better than robust PD controller in vertical motion. The simulation results show that the VDRA-VVP of submersible vehicle has good spatial maneuverability, and verify the feasibility and reliability of control method.</abstract><pub>IEEE</pub><doi>10.1109/ICINFA.2010.5512364</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424457017
ispartof The 2010 IEEE International Conference on Information and Automation, 2010, p.206-211
issn
language eng
recordid cdi_ieee_primary_5512364
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adaptive control
dynamics model
kinematics model
Mathematics
Mobile robots
Motion control
PD control
Programmable control
Propellers
Remotely operated vehicles
Robust control
simulation
Underwater vehicles
VDRA-VVP
vertical motion control
title Modeling and simulation of variable direction rotatable axis of variable vector propeller of submersible vehicle in vertical motion
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A49%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Modeling%20and%20simulation%20of%20variable%20direction%20rotatable%20axis%20of%20variable%20vector%20propeller%20of%20submersible%20vehicle%20in%20vertical%20motion&rft.btitle=The%202010%20IEEE%20International%20Conference%20on%20Information%20and%20Automation&rft.au=Sheng%20Liu&rft.date=2010-06&rft.spage=206&rft.epage=211&rft.pages=206-211&rft.isbn=1424457017&rft.isbn_list=9781424457014&rft_id=info:doi/10.1109/ICINFA.2010.5512364&rft_dat=%3Cieee_6IE%3E5512364%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=9781424457045&rft.eisbn_list=1424457041&rft.eisbn_list=9781424457021&rft.eisbn_list=1424457025&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5512364&rfr_iscdi=true