Towards logic functions as the device

This paper argues for alternate state variables and new types of sophisticated devices that implement more functionality in one computational step than typical devices based on simple switches. Elementary excitations in solids enabling wave interactions are possible initial candidates to create such...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Shabadi, Prasad, Khitun, Alexander, Narayanan, Pritish, Mingqiang Bao, Koren, Israel, Wang, Kang L, Moritz, C Andras
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 16
container_issue
container_start_page 11
container_title
container_volume
creator Shabadi, Prasad
Khitun, Alexander
Narayanan, Pritish
Mingqiang Bao
Koren, Israel
Wang, Kang L
Moritz, C Andras
description This paper argues for alternate state variables and new types of sophisticated devices that implement more functionality in one computational step than typical devices based on simple switches. Elementary excitations in solids enabling wave interactions are possible initial candidates to create such new devices. The paper focuses on magnon-based spin-wave-logic functions (SPWF) and presents high fan-in majority, weighted high fan-in majority, and frequency-multiplexed weighted high fan-in majority devices as initial SPWFs. Experiments proving feasibility are also shown. Benefits vs. scaled CMOS are quantified. Results show that for 128 or larger inputs even a 2.5μm SPWF carry-look-ahead adder implementation is faster than the 45nm CMOS version. The 45nm SPWF adder is expected to be significantly faster across the whole range of input widths. In particular, the 45nm SPWF CLA adder is estimated to be at least 77X faster than CMOS version for input widths equal to or greater than 1024. A second example of a counter circuit is presented to illustrate the considerable reduction in complexity possible vs. CMOS.
doi_str_mv 10.1109/NANOARCH.2010.5510934
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5510934</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5510934</ieee_id><sourcerecordid>5510934</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1374-ce2e88adc6cf2764ec4db960ce210102fb7d88d5dd138ef3f6aefe6f8aac16cd3</originalsourceid><addsrcrecordid>eNo9j01LAzEUReMXWOv8AhGycTk17yWTZJbDoFYoLUhdlzR50UjtyKQq_nsHHFxdOAcu9zJ2DWIGIOrbZbNcNU_tfIZiQFU1MKmO2AUoVMoKqOGYTVCiKS2iPmFFbezoUMjTfwf2nBU5vwkxcAGgqgm7WXffrg-Z77qX5Hn83PtD6vaZu8wPr8QDfSVPl-wsul2mYswpe76_W7fzcrF6eGybRZlAGlV6QrLWBa99RKMVeRW2tRYDh2E6xq0J1oYqBJCWoozaUSQdrXMetA9yyq7-ehMRbT769O76n834WP4CIKpGPg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Towards logic functions as the device</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shabadi, Prasad ; Khitun, Alexander ; Narayanan, Pritish ; Mingqiang Bao ; Koren, Israel ; Wang, Kang L ; Moritz, C Andras</creator><creatorcontrib>Shabadi, Prasad ; Khitun, Alexander ; Narayanan, Pritish ; Mingqiang Bao ; Koren, Israel ; Wang, Kang L ; Moritz, C Andras</creatorcontrib><description>This paper argues for alternate state variables and new types of sophisticated devices that implement more functionality in one computational step than typical devices based on simple switches. Elementary excitations in solids enabling wave interactions are possible initial candidates to create such new devices. The paper focuses on magnon-based spin-wave-logic functions (SPWF) and presents high fan-in majority, weighted high fan-in majority, and frequency-multiplexed weighted high fan-in majority devices as initial SPWFs. Experiments proving feasibility are also shown. Benefits vs. scaled CMOS are quantified. Results show that for 128 or larger inputs even a 2.5μm SPWF carry-look-ahead adder implementation is faster than the 45nm CMOS version. The 45nm SPWF adder is expected to be significantly faster across the whole range of input widths. In particular, the 45nm SPWF CLA adder is estimated to be at least 77X faster than CMOS version for input widths equal to or greater than 1024. A second example of a counter circuit is presented to illustrate the considerable reduction in complexity possible vs. CMOS.</description><identifier>ISSN: 2327-8218</identifier><identifier>ISBN: 9781424480203</identifier><identifier>ISBN: 1424480205</identifier><identifier>EISSN: 2327-8226</identifier><identifier>EISBN: 1424480191</identifier><identifier>EISBN: 9781424480197</identifier><identifier>EISBN: 9781424480180</identifier><identifier>EISBN: 1424480183</identifier><identifier>DOI: 10.1109/NANOARCH.2010.5510934</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adders ; Arithmetic ; CMOS logic circuits ; Delay ; Fabrics ; high functionality devices ; Logic devices ; Logic functions ; Nanoscale devices ; nanoscale fabrics ; spin wave functions ; state variables ; Switches ; Wave functions</subject><ispartof>2010 IEEE/ACM International Symposium on Nanoscale Architectures, 2010, p.11-16</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5510934$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5510934$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shabadi, Prasad</creatorcontrib><creatorcontrib>Khitun, Alexander</creatorcontrib><creatorcontrib>Narayanan, Pritish</creatorcontrib><creatorcontrib>Mingqiang Bao</creatorcontrib><creatorcontrib>Koren, Israel</creatorcontrib><creatorcontrib>Wang, Kang L</creatorcontrib><creatorcontrib>Moritz, C Andras</creatorcontrib><title>Towards logic functions as the device</title><title>2010 IEEE/ACM International Symposium on Nanoscale Architectures</title><addtitle>NANOARCH</addtitle><description>This paper argues for alternate state variables and new types of sophisticated devices that implement more functionality in one computational step than typical devices based on simple switches. Elementary excitations in solids enabling wave interactions are possible initial candidates to create such new devices. The paper focuses on magnon-based spin-wave-logic functions (SPWF) and presents high fan-in majority, weighted high fan-in majority, and frequency-multiplexed weighted high fan-in majority devices as initial SPWFs. Experiments proving feasibility are also shown. Benefits vs. scaled CMOS are quantified. Results show that for 128 or larger inputs even a 2.5μm SPWF carry-look-ahead adder implementation is faster than the 45nm CMOS version. The 45nm SPWF adder is expected to be significantly faster across the whole range of input widths. In particular, the 45nm SPWF CLA adder is estimated to be at least 77X faster than CMOS version for input widths equal to or greater than 1024. A second example of a counter circuit is presented to illustrate the considerable reduction in complexity possible vs. CMOS.</description><subject>Adders</subject><subject>Arithmetic</subject><subject>CMOS logic circuits</subject><subject>Delay</subject><subject>Fabrics</subject><subject>high functionality devices</subject><subject>Logic devices</subject><subject>Logic functions</subject><subject>Nanoscale devices</subject><subject>nanoscale fabrics</subject><subject>spin wave functions</subject><subject>state variables</subject><subject>Switches</subject><subject>Wave functions</subject><issn>2327-8218</issn><issn>2327-8226</issn><isbn>9781424480203</isbn><isbn>1424480205</isbn><isbn>1424480191</isbn><isbn>9781424480197</isbn><isbn>9781424480180</isbn><isbn>1424480183</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNo9j01LAzEUReMXWOv8AhGycTk17yWTZJbDoFYoLUhdlzR50UjtyKQq_nsHHFxdOAcu9zJ2DWIGIOrbZbNcNU_tfIZiQFU1MKmO2AUoVMoKqOGYTVCiKS2iPmFFbezoUMjTfwf2nBU5vwkxcAGgqgm7WXffrg-Z77qX5Hn83PtD6vaZu8wPr8QDfSVPl-wsul2mYswpe76_W7fzcrF6eGybRZlAGlV6QrLWBa99RKMVeRW2tRYDh2E6xq0J1oYqBJCWoozaUSQdrXMetA9yyq7-ehMRbT769O76n834WP4CIKpGPg</recordid><startdate>201006</startdate><enddate>201006</enddate><creator>Shabadi, Prasad</creator><creator>Khitun, Alexander</creator><creator>Narayanan, Pritish</creator><creator>Mingqiang Bao</creator><creator>Koren, Israel</creator><creator>Wang, Kang L</creator><creator>Moritz, C Andras</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201006</creationdate><title>Towards logic functions as the device</title><author>Shabadi, Prasad ; Khitun, Alexander ; Narayanan, Pritish ; Mingqiang Bao ; Koren, Israel ; Wang, Kang L ; Moritz, C Andras</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1374-ce2e88adc6cf2764ec4db960ce210102fb7d88d5dd138ef3f6aefe6f8aac16cd3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Adders</topic><topic>Arithmetic</topic><topic>CMOS logic circuits</topic><topic>Delay</topic><topic>Fabrics</topic><topic>high functionality devices</topic><topic>Logic devices</topic><topic>Logic functions</topic><topic>Nanoscale devices</topic><topic>nanoscale fabrics</topic><topic>spin wave functions</topic><topic>state variables</topic><topic>Switches</topic><topic>Wave functions</topic><toplevel>online_resources</toplevel><creatorcontrib>Shabadi, Prasad</creatorcontrib><creatorcontrib>Khitun, Alexander</creatorcontrib><creatorcontrib>Narayanan, Pritish</creatorcontrib><creatorcontrib>Mingqiang Bao</creatorcontrib><creatorcontrib>Koren, Israel</creatorcontrib><creatorcontrib>Wang, Kang L</creatorcontrib><creatorcontrib>Moritz, C Andras</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shabadi, Prasad</au><au>Khitun, Alexander</au><au>Narayanan, Pritish</au><au>Mingqiang Bao</au><au>Koren, Israel</au><au>Wang, Kang L</au><au>Moritz, C Andras</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Towards logic functions as the device</atitle><btitle>2010 IEEE/ACM International Symposium on Nanoscale Architectures</btitle><stitle>NANOARCH</stitle><date>2010-06</date><risdate>2010</risdate><spage>11</spage><epage>16</epage><pages>11-16</pages><issn>2327-8218</issn><eissn>2327-8226</eissn><isbn>9781424480203</isbn><isbn>1424480205</isbn><eisbn>1424480191</eisbn><eisbn>9781424480197</eisbn><eisbn>9781424480180</eisbn><eisbn>1424480183</eisbn><abstract>This paper argues for alternate state variables and new types of sophisticated devices that implement more functionality in one computational step than typical devices based on simple switches. Elementary excitations in solids enabling wave interactions are possible initial candidates to create such new devices. The paper focuses on magnon-based spin-wave-logic functions (SPWF) and presents high fan-in majority, weighted high fan-in majority, and frequency-multiplexed weighted high fan-in majority devices as initial SPWFs. Experiments proving feasibility are also shown. Benefits vs. scaled CMOS are quantified. Results show that for 128 or larger inputs even a 2.5μm SPWF carry-look-ahead adder implementation is faster than the 45nm CMOS version. The 45nm SPWF adder is expected to be significantly faster across the whole range of input widths. In particular, the 45nm SPWF CLA adder is estimated to be at least 77X faster than CMOS version for input widths equal to or greater than 1024. A second example of a counter circuit is presented to illustrate the considerable reduction in complexity possible vs. CMOS.</abstract><pub>IEEE</pub><doi>10.1109/NANOARCH.2010.5510934</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2327-8218
ispartof 2010 IEEE/ACM International Symposium on Nanoscale Architectures, 2010, p.11-16
issn 2327-8218
2327-8226
language eng
recordid cdi_ieee_primary_5510934
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Adders
Arithmetic
CMOS logic circuits
Delay
Fabrics
high functionality devices
Logic devices
Logic functions
Nanoscale devices
nanoscale fabrics
spin wave functions
state variables
Switches
Wave functions
title Towards logic functions as the device
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T17%3A06%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Towards%20logic%20functions%20as%20the%20device&rft.btitle=2010%20IEEE/ACM%20International%20Symposium%20on%20Nanoscale%20Architectures&rft.au=Shabadi,%20Prasad&rft.date=2010-06&rft.spage=11&rft.epage=16&rft.pages=11-16&rft.issn=2327-8218&rft.eissn=2327-8226&rft.isbn=9781424480203&rft.isbn_list=1424480205&rft_id=info:doi/10.1109/NANOARCH.2010.5510934&rft_dat=%3Cieee_6IE%3E5510934%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424480191&rft.eisbn_list=9781424480197&rft.eisbn_list=9781424480180&rft.eisbn_list=1424480183&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5510934&rfr_iscdi=true