On curve matching

Two algorithms to find the longest common subcurve of two 2D curves are presented. These algorithms are based on conversion of the curves into shape signature strings and application of string matching techniques to find long matching substrings, followed by direct curve matching of the correspondin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence 1990-05, Vol.12 (5), p.483-489
1. Verfasser: Wolfson, H.J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 489
container_issue 5
container_start_page 483
container_title IEEE transactions on pattern analysis and machine intelligence
container_volume 12
creator Wolfson, H.J.
description Two algorithms to find the longest common subcurve of two 2D curves are presented. These algorithms are based on conversion of the curves into shape signature strings and application of string matching techniques to find long matching substrings, followed by direct curve matching of the corresponding candidate subcurves to find the longest matching subcurve. The first algorithm is of complexity O(n), where n is the number of sample points on the curves. The second one, while being theoretically somewhat less efficient, proved to be robust and efficient in practical applications. Both algorithms solve the problem of general curves without being dependent on some set of special points on the curves. The algorithms have industrial applications to problems of object assembly and object recognition. Experimental results are included. The algorithms can be easily extended to the 3D case.< >
doi_str_mv 10.1109/34.55108
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_ieee_primary_55108</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>55108</ieee_id><sourcerecordid>28408900</sourcerecordid><originalsourceid>FETCH-LOGICAL-c335t-22ce61f4a64ad9ec3ec2e896c62ec70f380589b7db162cdff8c12d20db56f52e3</originalsourceid><addsrcrecordid>eNqF0L1LA0EQBfBFFDyjoKVdGsXm4uxndksJfkEgjdbL3tysnlwucTcR_O-TeEFLqynmx3vwGDvnMOIc3K1UI6052ANWcCddKbV0h6wAbkRprbDH7CTnDwCuNMiCXcy6Ia7TFw3nYYXvTfd2yo5iaDOd7e-AvT7cv0yeyuns8XlyNy1RSr0qhUAyPKpgVKgdoSQUZJ1BIwjHEKUFbV01rqttM9YxWuSiFlBX2kQtSA7YdZ-7TIvPNeWVnzcZqW1DR4t19sIqsA7gf6jHRimhtvCmh5gWOSeKfpmaeUjfnoPfjeOl8j_jbOnVPjNkDG1MocMm_3knQYDbucveNUT0--4zNirqaSY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>25764424</pqid></control><display><type>article</type><title>On curve matching</title><source>IEEE Electronic Library (IEL)</source><creator>Wolfson, H.J.</creator><creatorcontrib>Wolfson, H.J.</creatorcontrib><description>Two algorithms to find the longest common subcurve of two 2D curves are presented. These algorithms are based on conversion of the curves into shape signature strings and application of string matching techniques to find long matching substrings, followed by direct curve matching of the corresponding candidate subcurves to find the longest matching subcurve. The first algorithm is of complexity O(n), where n is the number of sample points on the curves. The second one, while being theoretically somewhat less efficient, proved to be robust and efficient in practical applications. Both algorithms solve the problem of general curves without being dependent on some set of special points on the curves. The algorithms have industrial applications to problems of object assembly and object recognition. Experimental results are included. The algorithms can be easily extended to the 3D case.&lt; &gt;</description><identifier>ISSN: 0162-8828</identifier><identifier>EISSN: 1939-3539</identifier><identifier>DOI: 10.1109/34.55108</identifier><identifier>CODEN: ITPIDJ</identifier><language>eng</language><publisher>Los Alamitos, CA: IEEE</publisher><subject>Application software ; Applied sciences ; Artificial intelligence ; Computer science; control theory; systems ; Exact sciences and technology ; Intelligent robots ; Layout ; Least squares methods ; Object recognition ; Pattern matching ; Pattern recognition ; Pattern recognition. Digital image processing. Computational geometry ; Robotic assembly ; Robustness ; Shape</subject><ispartof>IEEE transactions on pattern analysis and machine intelligence, 1990-05, Vol.12 (5), p.483-489</ispartof><rights>1991 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c335t-22ce61f4a64ad9ec3ec2e896c62ec70f380589b7db162cdff8c12d20db56f52e3</citedby><cites>FETCH-LOGICAL-c335t-22ce61f4a64ad9ec3ec2e896c62ec70f380589b7db162cdff8c12d20db56f52e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/55108$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,796,27923,27924,54757</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/55108$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19302098$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolfson, H.J.</creatorcontrib><title>On curve matching</title><title>IEEE transactions on pattern analysis and machine intelligence</title><addtitle>TPAMI</addtitle><description>Two algorithms to find the longest common subcurve of two 2D curves are presented. These algorithms are based on conversion of the curves into shape signature strings and application of string matching techniques to find long matching substrings, followed by direct curve matching of the corresponding candidate subcurves to find the longest matching subcurve. The first algorithm is of complexity O(n), where n is the number of sample points on the curves. The second one, while being theoretically somewhat less efficient, proved to be robust and efficient in practical applications. Both algorithms solve the problem of general curves without being dependent on some set of special points on the curves. The algorithms have industrial applications to problems of object assembly and object recognition. Experimental results are included. The algorithms can be easily extended to the 3D case.&lt; &gt;</description><subject>Application software</subject><subject>Applied sciences</subject><subject>Artificial intelligence</subject><subject>Computer science; control theory; systems</subject><subject>Exact sciences and technology</subject><subject>Intelligent robots</subject><subject>Layout</subject><subject>Least squares methods</subject><subject>Object recognition</subject><subject>Pattern matching</subject><subject>Pattern recognition</subject><subject>Pattern recognition. Digital image processing. Computational geometry</subject><subject>Robotic assembly</subject><subject>Robustness</subject><subject>Shape</subject><issn>0162-8828</issn><issn>1939-3539</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1990</creationdate><recordtype>article</recordtype><recordid>eNqF0L1LA0EQBfBFFDyjoKVdGsXm4uxndksJfkEgjdbL3tysnlwucTcR_O-TeEFLqynmx3vwGDvnMOIc3K1UI6052ANWcCddKbV0h6wAbkRprbDH7CTnDwCuNMiCXcy6Ia7TFw3nYYXvTfd2yo5iaDOd7e-AvT7cv0yeyuns8XlyNy1RSr0qhUAyPKpgVKgdoSQUZJ1BIwjHEKUFbV01rqttM9YxWuSiFlBX2kQtSA7YdZ-7TIvPNeWVnzcZqW1DR4t19sIqsA7gf6jHRimhtvCmh5gWOSeKfpmaeUjfnoPfjeOl8j_jbOnVPjNkDG1MocMm_3knQYDbucveNUT0--4zNirqaSY</recordid><startdate>19900501</startdate><enddate>19900501</enddate><creator>Wolfson, H.J.</creator><general>IEEE</general><general>IEEE Computer Society</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>19900501</creationdate><title>On curve matching</title><author>Wolfson, H.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c335t-22ce61f4a64ad9ec3ec2e896c62ec70f380589b7db162cdff8c12d20db56f52e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1990</creationdate><topic>Application software</topic><topic>Applied sciences</topic><topic>Artificial intelligence</topic><topic>Computer science; control theory; systems</topic><topic>Exact sciences and technology</topic><topic>Intelligent robots</topic><topic>Layout</topic><topic>Least squares methods</topic><topic>Object recognition</topic><topic>Pattern matching</topic><topic>Pattern recognition</topic><topic>Pattern recognition. Digital image processing. Computational geometry</topic><topic>Robotic assembly</topic><topic>Robustness</topic><topic>Shape</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolfson, H.J.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wolfson, H.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On curve matching</atitle><jtitle>IEEE transactions on pattern analysis and machine intelligence</jtitle><stitle>TPAMI</stitle><date>1990-05-01</date><risdate>1990</risdate><volume>12</volume><issue>5</issue><spage>483</spage><epage>489</epage><pages>483-489</pages><issn>0162-8828</issn><eissn>1939-3539</eissn><coden>ITPIDJ</coden><abstract>Two algorithms to find the longest common subcurve of two 2D curves are presented. These algorithms are based on conversion of the curves into shape signature strings and application of string matching techniques to find long matching substrings, followed by direct curve matching of the corresponding candidate subcurves to find the longest matching subcurve. The first algorithm is of complexity O(n), where n is the number of sample points on the curves. The second one, while being theoretically somewhat less efficient, proved to be robust and efficient in practical applications. Both algorithms solve the problem of general curves without being dependent on some set of special points on the curves. The algorithms have industrial applications to problems of object assembly and object recognition. Experimental results are included. The algorithms can be easily extended to the 3D case.&lt; &gt;</abstract><cop>Los Alamitos, CA</cop><pub>IEEE</pub><doi>10.1109/34.55108</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0162-8828
ispartof IEEE transactions on pattern analysis and machine intelligence, 1990-05, Vol.12 (5), p.483-489
issn 0162-8828
1939-3539
language eng
recordid cdi_ieee_primary_55108
source IEEE Electronic Library (IEL)
subjects Application software
Applied sciences
Artificial intelligence
Computer science
control theory
systems
Exact sciences and technology
Intelligent robots
Layout
Least squares methods
Object recognition
Pattern matching
Pattern recognition
Pattern recognition. Digital image processing. Computational geometry
Robotic assembly
Robustness
Shape
title On curve matching
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T20%3A09%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20curve%20matching&rft.jtitle=IEEE%20transactions%20on%20pattern%20analysis%20and%20machine%20intelligence&rft.au=Wolfson,%20H.J.&rft.date=1990-05-01&rft.volume=12&rft.issue=5&rft.spage=483&rft.epage=489&rft.pages=483-489&rft.issn=0162-8828&rft.eissn=1939-3539&rft.coden=ITPIDJ&rft_id=info:doi/10.1109/34.55108&rft_dat=%3Cproquest_RIE%3E28408900%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=25764424&rft_id=info:pmid/&rft_ieee_id=55108&rfr_iscdi=true