Real-time identification and localization of body parts from depth images

We deal with the problem of detecting and identifying body parts in depth images at video frame rates. Our solution involves a novel interest point detector for mesh and range data that is particularly well suited for analyzing human shape. The interest points, which are based on identifying geodesi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Plagemann, Christian, Ganapathi, Varun, Koller, Daphne, Thrun, Sebastian
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3113
container_issue
container_start_page 3108
container_title
container_volume
creator Plagemann, Christian
Ganapathi, Varun
Koller, Daphne
Thrun, Sebastian
description We deal with the problem of detecting and identifying body parts in depth images at video frame rates. Our solution involves a novel interest point detector for mesh and range data that is particularly well suited for analyzing human shape. The interest points, which are based on identifying geodesic extrema on the surface mesh, coincide with salient points of the body, which can be classified as, e.g., hand, foot or head using local shape descriptors. Our approach also provides a natural way of estimating a 3D orientation vector for a given interest point. This can be used to normalize the local shape descriptors to simplify the classification problem as well as to directly estimate the orientation of body parts in space. Experiments involving ground truth labels acquired via an active motion capture system show that our interest points in conjunction with a boosted patch classifier are significantly better in detecting body parts in depth images than state-of-the-art sliding-window based detectors.
doi_str_mv 10.1109/ROBOT.2010.5509559
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5509559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5509559</ieee_id><sourcerecordid>5509559</sourcerecordid><originalsourceid>FETCH-LOGICAL-c290t-eaeed194fe0c1ebb826be5474166e0f340d66ca229d26d4eaaabd9f548d190653</originalsourceid><addsrcrecordid>eNotUNtKw0AUXG9gWvsD-rI_sPXsNdlHLVULhUCp4FvZZM_qSm4kealfb6B5GmaGmYEh5JHDmnOwz4f8NT-uBUxca7Ba2yuy4EoopUGBvCaJ0GnKIEu_bsjKptnsyYzfkoSDBqZSYe_JYhh-AUBKYxKyO6Cr2BhrpNFjM8YQSzfGtqGu8bRqS1fFv4vQBlq0_kw7148DDX1bU4_d-ENj7b5xeCB3wVUDrmZcks-37XHzwfb5-27zsmelsDAydIieWxUQSo5FkQlToFap4sYgBKnAG1M6IawXxit0zhXeBq2yKQVGyyV5uvRGRDx1_bTen0_zJfIfX11SCQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Real-time identification and localization of body parts from depth images</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Plagemann, Christian ; Ganapathi, Varun ; Koller, Daphne ; Thrun, Sebastian</creator><creatorcontrib>Plagemann, Christian ; Ganapathi, Varun ; Koller, Daphne ; Thrun, Sebastian</creatorcontrib><description>We deal with the problem of detecting and identifying body parts in depth images at video frame rates. Our solution involves a novel interest point detector for mesh and range data that is particularly well suited for analyzing human shape. The interest points, which are based on identifying geodesic extrema on the surface mesh, coincide with salient points of the body, which can be classified as, e.g., hand, foot or head using local shape descriptors. Our approach also provides a natural way of estimating a 3D orientation vector for a given interest point. This can be used to normalize the local shape descriptors to simplify the classification problem as well as to directly estimate the orientation of body parts in space. Experiments involving ground truth labels acquired via an active motion capture system show that our interest points in conjunction with a boosted patch classifier are significantly better in detecting body parts in depth images than state-of-the-art sliding-window based detectors.</description><identifier>ISSN: 1050-4729</identifier><identifier>ISBN: 9781424450381</identifier><identifier>ISBN: 1424450381</identifier><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 1424450403</identifier><identifier>EISBN: 9781424450404</identifier><identifier>DOI: 10.1109/ROBOT.2010.5509559</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Detectors ; Head ; Humans ; Image sensors ; Layout ; Motion detection ; Shape ; Skeleton ; USA Councils</subject><ispartof>2010 IEEE International Conference on Robotics and Automation, 2010, p.3108-3113</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c290t-eaeed194fe0c1ebb826be5474166e0f340d66ca229d26d4eaaabd9f548d190653</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5509559$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5509559$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Plagemann, Christian</creatorcontrib><creatorcontrib>Ganapathi, Varun</creatorcontrib><creatorcontrib>Koller, Daphne</creatorcontrib><creatorcontrib>Thrun, Sebastian</creatorcontrib><title>Real-time identification and localization of body parts from depth images</title><title>2010 IEEE International Conference on Robotics and Automation</title><addtitle>ROBOT</addtitle><description>We deal with the problem of detecting and identifying body parts in depth images at video frame rates. Our solution involves a novel interest point detector for mesh and range data that is particularly well suited for analyzing human shape. The interest points, which are based on identifying geodesic extrema on the surface mesh, coincide with salient points of the body, which can be classified as, e.g., hand, foot or head using local shape descriptors. Our approach also provides a natural way of estimating a 3D orientation vector for a given interest point. This can be used to normalize the local shape descriptors to simplify the classification problem as well as to directly estimate the orientation of body parts in space. Experiments involving ground truth labels acquired via an active motion capture system show that our interest points in conjunction with a boosted patch classifier are significantly better in detecting body parts in depth images than state-of-the-art sliding-window based detectors.</description><subject>Cameras</subject><subject>Detectors</subject><subject>Head</subject><subject>Humans</subject><subject>Image sensors</subject><subject>Layout</subject><subject>Motion detection</subject><subject>Shape</subject><subject>Skeleton</subject><subject>USA Councils</subject><issn>1050-4729</issn><issn>2577-087X</issn><isbn>9781424450381</isbn><isbn>1424450381</isbn><isbn>1424450403</isbn><isbn>9781424450404</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNotUNtKw0AUXG9gWvsD-rI_sPXsNdlHLVULhUCp4FvZZM_qSm4kealfb6B5GmaGmYEh5JHDmnOwz4f8NT-uBUxca7Ba2yuy4EoopUGBvCaJ0GnKIEu_bsjKptnsyYzfkoSDBqZSYe_JYhh-AUBKYxKyO6Cr2BhrpNFjM8YQSzfGtqGu8bRqS1fFv4vQBlq0_kw7148DDX1bU4_d-ENj7b5xeCB3wVUDrmZcks-37XHzwfb5-27zsmelsDAydIieWxUQSo5FkQlToFap4sYgBKnAG1M6IawXxit0zhXeBq2yKQVGyyV5uvRGRDx1_bTen0_zJfIfX11SCQ</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Plagemann, Christian</creator><creator>Ganapathi, Varun</creator><creator>Koller, Daphne</creator><creator>Thrun, Sebastian</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>201005</creationdate><title>Real-time identification and localization of body parts from depth images</title><author>Plagemann, Christian ; Ganapathi, Varun ; Koller, Daphne ; Thrun, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c290t-eaeed194fe0c1ebb826be5474166e0f340d66ca229d26d4eaaabd9f548d190653</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cameras</topic><topic>Detectors</topic><topic>Head</topic><topic>Humans</topic><topic>Image sensors</topic><topic>Layout</topic><topic>Motion detection</topic><topic>Shape</topic><topic>Skeleton</topic><topic>USA Councils</topic><toplevel>online_resources</toplevel><creatorcontrib>Plagemann, Christian</creatorcontrib><creatorcontrib>Ganapathi, Varun</creatorcontrib><creatorcontrib>Koller, Daphne</creatorcontrib><creatorcontrib>Thrun, Sebastian</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Plagemann, Christian</au><au>Ganapathi, Varun</au><au>Koller, Daphne</au><au>Thrun, Sebastian</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Real-time identification and localization of body parts from depth images</atitle><btitle>2010 IEEE International Conference on Robotics and Automation</btitle><stitle>ROBOT</stitle><date>2010-05</date><risdate>2010</risdate><spage>3108</spage><epage>3113</epage><pages>3108-3113</pages><issn>1050-4729</issn><eissn>2577-087X</eissn><isbn>9781424450381</isbn><isbn>1424450381</isbn><eisbn>1424450403</eisbn><eisbn>9781424450404</eisbn><abstract>We deal with the problem of detecting and identifying body parts in depth images at video frame rates. Our solution involves a novel interest point detector for mesh and range data that is particularly well suited for analyzing human shape. The interest points, which are based on identifying geodesic extrema on the surface mesh, coincide with salient points of the body, which can be classified as, e.g., hand, foot or head using local shape descriptors. Our approach also provides a natural way of estimating a 3D orientation vector for a given interest point. This can be used to normalize the local shape descriptors to simplify the classification problem as well as to directly estimate the orientation of body parts in space. Experiments involving ground truth labels acquired via an active motion capture system show that our interest points in conjunction with a boosted patch classifier are significantly better in detecting body parts in depth images than state-of-the-art sliding-window based detectors.</abstract><pub>IEEE</pub><doi>10.1109/ROBOT.2010.5509559</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1050-4729
ispartof 2010 IEEE International Conference on Robotics and Automation, 2010, p.3108-3113
issn 1050-4729
2577-087X
language eng
recordid cdi_ieee_primary_5509559
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Cameras
Detectors
Head
Humans
Image sensors
Layout
Motion detection
Shape
Skeleton
USA Councils
title Real-time identification and localization of body parts from depth images
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A40%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Real-time%20identification%20and%20localization%20of%20body%20parts%20from%20depth%20images&rft.btitle=2010%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation&rft.au=Plagemann,%20Christian&rft.date=2010-05&rft.spage=3108&rft.epage=3113&rft.pages=3108-3113&rft.issn=1050-4729&rft.eissn=2577-087X&rft.isbn=9781424450381&rft.isbn_list=1424450381&rft_id=info:doi/10.1109/ROBOT.2010.5509559&rft_dat=%3Cieee_6IE%3E5509559%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424450403&rft.eisbn_list=9781424450404&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5509559&rfr_iscdi=true