On-line kinematics reasoning for reconfigurable robot drives

The control system for a mobile robot typically assumes fixed kinematics according to the drive's geometry and functionality. Faults in the system, for example a blocked steering actuator, will then lead to an undesired behaviour, unless one takes care of specific single and/or multiple faults...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Hofbaur, Michael, Brandstötter, Mathias, Schörghuber, Christoph, Steinbauer, Gerald
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The control system for a mobile robot typically assumes fixed kinematics according to the drive's geometry and functionality. Faults in the system, for example a blocked steering actuator, will then lead to an undesired behaviour, unless one takes care of specific single and/or multiple faults explicitly. We present a novel model-programmed procedure for on-line kinematics reasoning that allows a robot to deduce the (inverse)-kinematics of the drive and also its kinematic abilities for the specific modes of operation and some falt modes during operation. As a consequence, we can reconfigure a robot drive to compensate for some faults and also inform a higher level control system about changed mobility capabilities of a robot. Being fault tolerant is, however, only one advantage of our approach that derives the kinematics control strategy from a geometric and functional model of the drive. We can easily adapt the controller for various robot drives, handle drives that change their geometry and functionality during run-time and also provide the basis for a flexible control scheme for self-configuring multi-robot systems.
ISSN:1050-4729
2577-087X
DOI:10.1109/ROBOT.2010.5509399