Application research on coal analysis of Near Infrared Spectroscopy (NIRS) by intelligent algorithms

Traditional Modeling Methods (such as PCA, PLS, Neural Network) have the disadvantages of low determination precision and long analysis time resulted by lots of wavelength points in Near Infrared Spectroscopy (NIRS). Considering the global search ability of genetic algorithm, this paper proposed a n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Ming Li, Zhibin Xu, Lei Yu, Meng Lei, Baoran An
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2419
container_issue
container_start_page 2416
container_title
container_volume
creator Ming Li
Zhibin Xu
Lei Yu
Meng Lei
Baoran An
description Traditional Modeling Methods (such as PCA, PLS, Neural Network) have the disadvantages of low determination precision and long analysis time resulted by lots of wavelength points in Near Infrared Spectroscopy (NIRS). Considering the global search ability of genetic algorithm, this paper proposed a new back-propagation neural network model which selects parts of the spectroscopy wavelength points as the modeling data base on genetic algorithm. The whole spectrum range is divided into 20 subintervals, whose all probable combinations compose the searching space. The determination coefficient denoted by R2 is selected as the fitness function. Through evolving generation by generation, the combination of subintervals with best fitness is selected as the modeling data. The experiment compared the results of proposed model with traditional back-propagation neural network model whose modeling data is the whole range of spectrum, after selection with genetic algorithm, the number of wavelength points is just about 65% of the whole spectrum range; the determination coefficient R2 of two methods are 0.9312 and 0.7382, respectively. The experiment results show that, region selection with genetic algorithm before modeling of coal analysis, the precision of prediction and the speed of analysis can be improved a lot.
doi_str_mv 10.1109/CCDC.2010.5498805
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5498805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5498805</ieee_id><sourcerecordid>5498805</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f504d63cc59b60fe28167ce21a62f0f920a324e6c47092655692ff2ef9c552193</originalsourceid><addsrcrecordid>eNpFkEtLAzEUheOjYFv7A8RNlrqYmncmyzK-CqWC1XVJ05s2ks4MyWzm3zug6Nmce_jgwD0I3VAyp5SYh6p6rOaMDFEKU5ZEnqEJFUwISUsmz9GYGlEWRgh98Q-ovvwD3IzQhBFiDBec0ys0y_mLDBKSUa3HaL9o2xic7UJT4wQZbHJHPNyusRHb2sY-h4wbj9cDwsvaJ5tgjzctuC412TVtj-_Wy_fNPd71ONQdxBgOUHfYxkOTQnc85Ws08jZmmP36FH0-P31Ur8Xq7WVZLVZFoFp2hZdE7BV3TpqdIh5YSZV2wKhVzBNvGLGcCVBOaGKYklIZ5j0Db5wc3jF8im5_egMAbNsUTjb129_p-DdSjFvM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application research on coal analysis of Near Infrared Spectroscopy (NIRS) by intelligent algorithms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ming Li ; Zhibin Xu ; Lei Yu ; Meng Lei ; Baoran An</creator><creatorcontrib>Ming Li ; Zhibin Xu ; Lei Yu ; Meng Lei ; Baoran An</creatorcontrib><description>Traditional Modeling Methods (such as PCA, PLS, Neural Network) have the disadvantages of low determination precision and long analysis time resulted by lots of wavelength points in Near Infrared Spectroscopy (NIRS). Considering the global search ability of genetic algorithm, this paper proposed a new back-propagation neural network model which selects parts of the spectroscopy wavelength points as the modeling data base on genetic algorithm. The whole spectrum range is divided into 20 subintervals, whose all probable combinations compose the searching space. The determination coefficient denoted by R2 is selected as the fitness function. Through evolving generation by generation, the combination of subintervals with best fitness is selected as the modeling data. The experiment compared the results of proposed model with traditional back-propagation neural network model whose modeling data is the whole range of spectrum, after selection with genetic algorithm, the number of wavelength points is just about 65% of the whole spectrum range; the determination coefficient R2 of two methods are 0.9312 and 0.7382, respectively. The experiment results show that, region selection with genetic algorithm before modeling of coal analysis, the precision of prediction and the speed of analysis can be improved a lot.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 1424451817</identifier><identifier>ISBN: 9781424451814</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 1424451825</identifier><identifier>EISBN: 9781424451821</identifier><identifier>DOI: 10.1109/CCDC.2010.5498805</identifier><identifier>LCCN: 2009934331</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Coal Analysis ; Genetic Algorithm (GA) ; Genetic algorithms ; Information analysis ; Infrared spectra ; Intelligent networks ; Moisture measurement ; Multi-layer neural network ; Neural Network ; Neural networks ; Neurons ; NIRS ; Region Selection ; Spectroscopy</subject><ispartof>2010 Chinese Control and Decision Conference, 2010, p.2416-2419</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5498805$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5498805$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ming Li</creatorcontrib><creatorcontrib>Zhibin Xu</creatorcontrib><creatorcontrib>Lei Yu</creatorcontrib><creatorcontrib>Meng Lei</creatorcontrib><creatorcontrib>Baoran An</creatorcontrib><title>Application research on coal analysis of Near Infrared Spectroscopy (NIRS) by intelligent algorithms</title><title>2010 Chinese Control and Decision Conference</title><addtitle>CCDC</addtitle><description>Traditional Modeling Methods (such as PCA, PLS, Neural Network) have the disadvantages of low determination precision and long analysis time resulted by lots of wavelength points in Near Infrared Spectroscopy (NIRS). Considering the global search ability of genetic algorithm, this paper proposed a new back-propagation neural network model which selects parts of the spectroscopy wavelength points as the modeling data base on genetic algorithm. The whole spectrum range is divided into 20 subintervals, whose all probable combinations compose the searching space. The determination coefficient denoted by R2 is selected as the fitness function. Through evolving generation by generation, the combination of subintervals with best fitness is selected as the modeling data. The experiment compared the results of proposed model with traditional back-propagation neural network model whose modeling data is the whole range of spectrum, after selection with genetic algorithm, the number of wavelength points is just about 65% of the whole spectrum range; the determination coefficient R2 of two methods are 0.9312 and 0.7382, respectively. The experiment results show that, region selection with genetic algorithm before modeling of coal analysis, the precision of prediction and the speed of analysis can be improved a lot.</description><subject>Algorithm design and analysis</subject><subject>Coal Analysis</subject><subject>Genetic Algorithm (GA)</subject><subject>Genetic algorithms</subject><subject>Information analysis</subject><subject>Infrared spectra</subject><subject>Intelligent networks</subject><subject>Moisture measurement</subject><subject>Multi-layer neural network</subject><subject>Neural Network</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>NIRS</subject><subject>Region Selection</subject><subject>Spectroscopy</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>1424451817</isbn><isbn>9781424451814</isbn><isbn>1424451825</isbn><isbn>9781424451821</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtLAzEUheOjYFv7A8RNlrqYmncmyzK-CqWC1XVJ05s2ks4MyWzm3zug6Nmce_jgwD0I3VAyp5SYh6p6rOaMDFEKU5ZEnqEJFUwISUsmz9GYGlEWRgh98Q-ovvwD3IzQhBFiDBec0ys0y_mLDBKSUa3HaL9o2xic7UJT4wQZbHJHPNyusRHb2sY-h4wbj9cDwsvaJ5tgjzctuC412TVtj-_Wy_fNPd71ONQdxBgOUHfYxkOTQnc85Ws08jZmmP36FH0-P31Ur8Xq7WVZLVZFoFp2hZdE7BV3TpqdIh5YSZV2wKhVzBNvGLGcCVBOaGKYklIZ5j0Db5wc3jF8im5_egMAbNsUTjb129_p-DdSjFvM</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Ming Li</creator><creator>Zhibin Xu</creator><creator>Lei Yu</creator><creator>Meng Lei</creator><creator>Baoran An</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>Application research on coal analysis of Near Infrared Spectroscopy (NIRS) by intelligent algorithms</title><author>Ming Li ; Zhibin Xu ; Lei Yu ; Meng Lei ; Baoran An</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f504d63cc59b60fe28167ce21a62f0f920a324e6c47092655692ff2ef9c552193</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithm design and analysis</topic><topic>Coal Analysis</topic><topic>Genetic Algorithm (GA)</topic><topic>Genetic algorithms</topic><topic>Information analysis</topic><topic>Infrared spectra</topic><topic>Intelligent networks</topic><topic>Moisture measurement</topic><topic>Multi-layer neural network</topic><topic>Neural Network</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>NIRS</topic><topic>Region Selection</topic><topic>Spectroscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Ming Li</creatorcontrib><creatorcontrib>Zhibin Xu</creatorcontrib><creatorcontrib>Lei Yu</creatorcontrib><creatorcontrib>Meng Lei</creatorcontrib><creatorcontrib>Baoran An</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ming Li</au><au>Zhibin Xu</au><au>Lei Yu</au><au>Meng Lei</au><au>Baoran An</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application research on coal analysis of Near Infrared Spectroscopy (NIRS) by intelligent algorithms</atitle><btitle>2010 Chinese Control and Decision Conference</btitle><stitle>CCDC</stitle><date>2010-05</date><risdate>2010</risdate><spage>2416</spage><epage>2419</epage><pages>2416-2419</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>1424451817</isbn><isbn>9781424451814</isbn><eisbn>1424451825</eisbn><eisbn>9781424451821</eisbn><abstract>Traditional Modeling Methods (such as PCA, PLS, Neural Network) have the disadvantages of low determination precision and long analysis time resulted by lots of wavelength points in Near Infrared Spectroscopy (NIRS). Considering the global search ability of genetic algorithm, this paper proposed a new back-propagation neural network model which selects parts of the spectroscopy wavelength points as the modeling data base on genetic algorithm. The whole spectrum range is divided into 20 subintervals, whose all probable combinations compose the searching space. The determination coefficient denoted by R2 is selected as the fitness function. Through evolving generation by generation, the combination of subintervals with best fitness is selected as the modeling data. The experiment compared the results of proposed model with traditional back-propagation neural network model whose modeling data is the whole range of spectrum, after selection with genetic algorithm, the number of wavelength points is just about 65% of the whole spectrum range; the determination coefficient R2 of two methods are 0.9312 and 0.7382, respectively. The experiment results show that, region selection with genetic algorithm before modeling of coal analysis, the precision of prediction and the speed of analysis can be improved a lot.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2010.5498805</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-9439
ispartof 2010 Chinese Control and Decision Conference, 2010, p.2416-2419
issn 1948-9439
1948-9447
language eng
recordid cdi_ieee_primary_5498805
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Algorithm design and analysis
Coal Analysis
Genetic Algorithm (GA)
Genetic algorithms
Information analysis
Infrared spectra
Intelligent networks
Moisture measurement
Multi-layer neural network
Neural Network
Neural networks
Neurons
NIRS
Region Selection
Spectroscopy
title Application research on coal analysis of Near Infrared Spectroscopy (NIRS) by intelligent algorithms
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20research%20on%20coal%20analysis%20of%20Near%20Infrared%20Spectroscopy%20(NIRS)%20by%20intelligent%20algorithms&rft.btitle=2010%20Chinese%20Control%20and%20Decision%20Conference&rft.au=Ming%20Li&rft.date=2010-05&rft.spage=2416&rft.epage=2419&rft.pages=2416-2419&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=1424451817&rft.isbn_list=9781424451814&rft_id=info:doi/10.1109/CCDC.2010.5498805&rft_dat=%3Cieee_6IE%3E5498805%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424451825&rft.eisbn_list=9781424451821&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5498805&rfr_iscdi=true