Application research on coal analysis of Near Infrared Spectroscopy (NIRS) by intelligent algorithms
Traditional Modeling Methods (such as PCA, PLS, Neural Network) have the disadvantages of low determination precision and long analysis time resulted by lots of wavelength points in Near Infrared Spectroscopy (NIRS). Considering the global search ability of genetic algorithm, this paper proposed a n...
Gespeichert in:
Hauptverfasser: | , , , , |
---|---|
Format: | Tagungsbericht |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2419 |
---|---|
container_issue | |
container_start_page | 2416 |
container_title | |
container_volume | |
creator | Ming Li Zhibin Xu Lei Yu Meng Lei Baoran An |
description | Traditional Modeling Methods (such as PCA, PLS, Neural Network) have the disadvantages of low determination precision and long analysis time resulted by lots of wavelength points in Near Infrared Spectroscopy (NIRS). Considering the global search ability of genetic algorithm, this paper proposed a new back-propagation neural network model which selects parts of the spectroscopy wavelength points as the modeling data base on genetic algorithm. The whole spectrum range is divided into 20 subintervals, whose all probable combinations compose the searching space. The determination coefficient denoted by R2 is selected as the fitness function. Through evolving generation by generation, the combination of subintervals with best fitness is selected as the modeling data. The experiment compared the results of proposed model with traditional back-propagation neural network model whose modeling data is the whole range of spectrum, after selection with genetic algorithm, the number of wavelength points is just about 65% of the whole spectrum range; the determination coefficient R2 of two methods are 0.9312 and 0.7382, respectively. The experiment results show that, region selection with genetic algorithm before modeling of coal analysis, the precision of prediction and the speed of analysis can be improved a lot. |
doi_str_mv | 10.1109/CCDC.2010.5498805 |
format | Conference Proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5498805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5498805</ieee_id><sourcerecordid>5498805</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-f504d63cc59b60fe28167ce21a62f0f920a324e6c47092655692ff2ef9c552193</originalsourceid><addsrcrecordid>eNpFkEtLAzEUheOjYFv7A8RNlrqYmncmyzK-CqWC1XVJ05s2ks4MyWzm3zug6Nmce_jgwD0I3VAyp5SYh6p6rOaMDFEKU5ZEnqEJFUwISUsmz9GYGlEWRgh98Q-ovvwD3IzQhBFiDBec0ys0y_mLDBKSUa3HaL9o2xic7UJT4wQZbHJHPNyusRHb2sY-h4wbj9cDwsvaJ5tgjzctuC412TVtj-_Wy_fNPd71ONQdxBgOUHfYxkOTQnc85Ws08jZmmP36FH0-P31Ur8Xq7WVZLVZFoFp2hZdE7BV3TpqdIh5YSZV2wKhVzBNvGLGcCVBOaGKYklIZ5j0Db5wc3jF8im5_egMAbNsUTjb129_p-DdSjFvM</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Application research on coal analysis of Near Infrared Spectroscopy (NIRS) by intelligent algorithms</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Ming Li ; Zhibin Xu ; Lei Yu ; Meng Lei ; Baoran An</creator><creatorcontrib>Ming Li ; Zhibin Xu ; Lei Yu ; Meng Lei ; Baoran An</creatorcontrib><description>Traditional Modeling Methods (such as PCA, PLS, Neural Network) have the disadvantages of low determination precision and long analysis time resulted by lots of wavelength points in Near Infrared Spectroscopy (NIRS). Considering the global search ability of genetic algorithm, this paper proposed a new back-propagation neural network model which selects parts of the spectroscopy wavelength points as the modeling data base on genetic algorithm. The whole spectrum range is divided into 20 subintervals, whose all probable combinations compose the searching space. The determination coefficient denoted by R2 is selected as the fitness function. Through evolving generation by generation, the combination of subintervals with best fitness is selected as the modeling data. The experiment compared the results of proposed model with traditional back-propagation neural network model whose modeling data is the whole range of spectrum, after selection with genetic algorithm, the number of wavelength points is just about 65% of the whole spectrum range; the determination coefficient R2 of two methods are 0.9312 and 0.7382, respectively. The experiment results show that, region selection with genetic algorithm before modeling of coal analysis, the precision of prediction and the speed of analysis can be improved a lot.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 1424451817</identifier><identifier>ISBN: 9781424451814</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 1424451825</identifier><identifier>EISBN: 9781424451821</identifier><identifier>DOI: 10.1109/CCDC.2010.5498805</identifier><identifier>LCCN: 2009934331</identifier><language>eng</language><publisher>IEEE</publisher><subject>Algorithm design and analysis ; Coal Analysis ; Genetic Algorithm (GA) ; Genetic algorithms ; Information analysis ; Infrared spectra ; Intelligent networks ; Moisture measurement ; Multi-layer neural network ; Neural Network ; Neural networks ; Neurons ; NIRS ; Region Selection ; Spectroscopy</subject><ispartof>2010 Chinese Control and Decision Conference, 2010, p.2416-2419</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5498805$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2052,27902,54895</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5498805$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ming Li</creatorcontrib><creatorcontrib>Zhibin Xu</creatorcontrib><creatorcontrib>Lei Yu</creatorcontrib><creatorcontrib>Meng Lei</creatorcontrib><creatorcontrib>Baoran An</creatorcontrib><title>Application research on coal analysis of Near Infrared Spectroscopy (NIRS) by intelligent algorithms</title><title>2010 Chinese Control and Decision Conference</title><addtitle>CCDC</addtitle><description>Traditional Modeling Methods (such as PCA, PLS, Neural Network) have the disadvantages of low determination precision and long analysis time resulted by lots of wavelength points in Near Infrared Spectroscopy (NIRS). Considering the global search ability of genetic algorithm, this paper proposed a new back-propagation neural network model which selects parts of the spectroscopy wavelength points as the modeling data base on genetic algorithm. The whole spectrum range is divided into 20 subintervals, whose all probable combinations compose the searching space. The determination coefficient denoted by R2 is selected as the fitness function. Through evolving generation by generation, the combination of subintervals with best fitness is selected as the modeling data. The experiment compared the results of proposed model with traditional back-propagation neural network model whose modeling data is the whole range of spectrum, after selection with genetic algorithm, the number of wavelength points is just about 65% of the whole spectrum range; the determination coefficient R2 of two methods are 0.9312 and 0.7382, respectively. The experiment results show that, region selection with genetic algorithm before modeling of coal analysis, the precision of prediction and the speed of analysis can be improved a lot.</description><subject>Algorithm design and analysis</subject><subject>Coal Analysis</subject><subject>Genetic Algorithm (GA)</subject><subject>Genetic algorithms</subject><subject>Information analysis</subject><subject>Infrared spectra</subject><subject>Intelligent networks</subject><subject>Moisture measurement</subject><subject>Multi-layer neural network</subject><subject>Neural Network</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>NIRS</subject><subject>Region Selection</subject><subject>Spectroscopy</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>1424451817</isbn><isbn>9781424451814</isbn><isbn>1424451825</isbn><isbn>9781424451821</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkEtLAzEUheOjYFv7A8RNlrqYmncmyzK-CqWC1XVJ05s2ks4MyWzm3zug6Nmce_jgwD0I3VAyp5SYh6p6rOaMDFEKU5ZEnqEJFUwISUsmz9GYGlEWRgh98Q-ovvwD3IzQhBFiDBec0ys0y_mLDBKSUa3HaL9o2xic7UJT4wQZbHJHPNyusRHb2sY-h4wbj9cDwsvaJ5tgjzctuC412TVtj-_Wy_fNPd71ONQdxBgOUHfYxkOTQnc85Ws08jZmmP36FH0-P31Ur8Xq7WVZLVZFoFp2hZdE7BV3TpqdIh5YSZV2wKhVzBNvGLGcCVBOaGKYklIZ5j0Db5wc3jF8im5_egMAbNsUTjb129_p-DdSjFvM</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Ming Li</creator><creator>Zhibin Xu</creator><creator>Lei Yu</creator><creator>Meng Lei</creator><creator>Baoran An</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>Application research on coal analysis of Near Infrared Spectroscopy (NIRS) by intelligent algorithms</title><author>Ming Li ; Zhibin Xu ; Lei Yu ; Meng Lei ; Baoran An</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-f504d63cc59b60fe28167ce21a62f0f920a324e6c47092655692ff2ef9c552193</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithm design and analysis</topic><topic>Coal Analysis</topic><topic>Genetic Algorithm (GA)</topic><topic>Genetic algorithms</topic><topic>Information analysis</topic><topic>Infrared spectra</topic><topic>Intelligent networks</topic><topic>Moisture measurement</topic><topic>Multi-layer neural network</topic><topic>Neural Network</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>NIRS</topic><topic>Region Selection</topic><topic>Spectroscopy</topic><toplevel>online_resources</toplevel><creatorcontrib>Ming Li</creatorcontrib><creatorcontrib>Zhibin Xu</creatorcontrib><creatorcontrib>Lei Yu</creatorcontrib><creatorcontrib>Meng Lei</creatorcontrib><creatorcontrib>Baoran An</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ming Li</au><au>Zhibin Xu</au><au>Lei Yu</au><au>Meng Lei</au><au>Baoran An</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Application research on coal analysis of Near Infrared Spectroscopy (NIRS) by intelligent algorithms</atitle><btitle>2010 Chinese Control and Decision Conference</btitle><stitle>CCDC</stitle><date>2010-05</date><risdate>2010</risdate><spage>2416</spage><epage>2419</epage><pages>2416-2419</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>1424451817</isbn><isbn>9781424451814</isbn><eisbn>1424451825</eisbn><eisbn>9781424451821</eisbn><abstract>Traditional Modeling Methods (such as PCA, PLS, Neural Network) have the disadvantages of low determination precision and long analysis time resulted by lots of wavelength points in Near Infrared Spectroscopy (NIRS). Considering the global search ability of genetic algorithm, this paper proposed a new back-propagation neural network model which selects parts of the spectroscopy wavelength points as the modeling data base on genetic algorithm. The whole spectrum range is divided into 20 subintervals, whose all probable combinations compose the searching space. The determination coefficient denoted by R2 is selected as the fitness function. Through evolving generation by generation, the combination of subintervals with best fitness is selected as the modeling data. The experiment compared the results of proposed model with traditional back-propagation neural network model whose modeling data is the whole range of spectrum, after selection with genetic algorithm, the number of wavelength points is just about 65% of the whole spectrum range; the determination coefficient R2 of two methods are 0.9312 and 0.7382, respectively. The experiment results show that, region selection with genetic algorithm before modeling of coal analysis, the precision of prediction and the speed of analysis can be improved a lot.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2010.5498805</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1948-9439 |
ispartof | 2010 Chinese Control and Decision Conference, 2010, p.2416-2419 |
issn | 1948-9439 1948-9447 |
language | eng |
recordid | cdi_ieee_primary_5498805 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Algorithm design and analysis Coal Analysis Genetic Algorithm (GA) Genetic algorithms Information analysis Infrared spectra Intelligent networks Moisture measurement Multi-layer neural network Neural Network Neural networks Neurons NIRS Region Selection Spectroscopy |
title | Application research on coal analysis of Near Infrared Spectroscopy (NIRS) by intelligent algorithms |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T04%3A29%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Application%20research%20on%20coal%20analysis%20of%20Near%20Infrared%20Spectroscopy%20(NIRS)%20by%20intelligent%20algorithms&rft.btitle=2010%20Chinese%20Control%20and%20Decision%20Conference&rft.au=Ming%20Li&rft.date=2010-05&rft.spage=2416&rft.epage=2419&rft.pages=2416-2419&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=1424451817&rft.isbn_list=9781424451814&rft_id=info:doi/10.1109/CCDC.2010.5498805&rft_dat=%3Cieee_6IE%3E5498805%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424451825&rft.eisbn_list=9781424451821&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5498805&rfr_iscdi=true |