The endpoint forecast of AOD stove ferroalloy steel-making based on wavelet neural network

The AOD stove ferroalloy steel-making endpoint temperature and the ingredient are the control objectives of AOD stove ferroalloy steel-making, which has serious nonlinear relations with variables such as oxygen blown quantity and the quantity of molten steel and is unable to measure continuously onl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Yangxiao Hong, Xu Jing, Yanghong Tao
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2886
container_issue
container_start_page 2882
container_title
container_volume
creator Yangxiao Hong
Xu Jing
Yanghong Tao
description The AOD stove ferroalloy steel-making endpoint temperature and the ingredient are the control objectives of AOD stove ferroalloy steel-making, which has serious nonlinear relations with variables such as oxygen blown quantity and the quantity of molten steel and is unable to measure continuously online. This article develops a set of AOD stove smelt ferroalloy end-point control model based on the wavelet neural network and some actual data of a 180t AOD ferroalloy stove in Jilin Ferroalloy Factory to conduct the model verification research. By forecasting the end-point temperature and the carbon content and gathering the spot operating data and the practical application, we can see that the double hit probability of carbon and temperature reaches above 80%.
doi_str_mv 10.1109/CCDC.2010.5498689
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5498689</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5498689</ieee_id><sourcerecordid>5498689</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-657be58727d489d20553722b52a9014f1c36265f9a0eac3e8b0b33060f7449153</originalsourceid><addsrcrecordid>eNpFkMtuwjAURN0HUoHyAVU3_oFQP65je4lCXxISG7rpBjnkuk0JMXJcEH_fSEXtbI5mRprFEHLH2ZRzZh-KYl5MBeutAmtyYy_IiIMAUNwIdUmG3ILJLIC--i-4vv4rpB2QkWDMWglS8hsy6bov1guU4FoPyfvqEym21T7UbaI-RNy4LtHg6Ww5p10KB6QeYwyuacKpDxCbbOe2dftBS9dhRUNLj-6ADSba4nd0TY90DHF7SwbeNR1OzhyTt6fHVfGSLZbPr8VskdVcq5TlSpeojBa6AmMrwZSSWohSCWcZB883Mhe58tYxdBuJpmSllCxnXgNYruSY3P_u1oi43sd65-JpfT5M_gA9SVfa</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>The endpoint forecast of AOD stove ferroalloy steel-making based on wavelet neural network</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Yangxiao Hong ; Xu Jing ; Yanghong Tao</creator><creatorcontrib>Yangxiao Hong ; Xu Jing ; Yanghong Tao</creatorcontrib><description>The AOD stove ferroalloy steel-making endpoint temperature and the ingredient are the control objectives of AOD stove ferroalloy steel-making, which has serious nonlinear relations with variables such as oxygen blown quantity and the quantity of molten steel and is unable to measure continuously online. This article develops a set of AOD stove smelt ferroalloy end-point control model based on the wavelet neural network and some actual data of a 180t AOD ferroalloy stove in Jilin Ferroalloy Factory to conduct the model verification research. By forecasting the end-point temperature and the carbon content and gathering the spot operating data and the practical application, we can see that the double hit probability of carbon and temperature reaches above 80%.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 1424451817</identifier><identifier>ISBN: 9781424451814</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 1424451825</identifier><identifier>EISBN: 9781424451821</identifier><identifier>DOI: 10.1109/CCDC.2010.5498689</identifier><identifier>LCCN: 2009934331</identifier><language>eng</language><publisher>IEEE</publisher><subject>AOD Stove ; Argon ; Biological neural networks ; Chromium ; Control engineering ; Ferroalloy ; Forecast ; Iron ; Neural networks ; Predictive models ; Steel ; Temperature control ; Temperature distribution ; Wavelet Neural Network</subject><ispartof>2010 Chinese Control and Decision Conference, 2010, p.2882-2886</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5498689$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>310,311,781,785,790,791,2059,27927,54922</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5498689$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yangxiao Hong</creatorcontrib><creatorcontrib>Xu Jing</creatorcontrib><creatorcontrib>Yanghong Tao</creatorcontrib><title>The endpoint forecast of AOD stove ferroalloy steel-making based on wavelet neural network</title><title>2010 Chinese Control and Decision Conference</title><addtitle>CCDC</addtitle><description>The AOD stove ferroalloy steel-making endpoint temperature and the ingredient are the control objectives of AOD stove ferroalloy steel-making, which has serious nonlinear relations with variables such as oxygen blown quantity and the quantity of molten steel and is unable to measure continuously online. This article develops a set of AOD stove smelt ferroalloy end-point control model based on the wavelet neural network and some actual data of a 180t AOD ferroalloy stove in Jilin Ferroalloy Factory to conduct the model verification research. By forecasting the end-point temperature and the carbon content and gathering the spot operating data and the practical application, we can see that the double hit probability of carbon and temperature reaches above 80%.</description><subject>AOD Stove</subject><subject>Argon</subject><subject>Biological neural networks</subject><subject>Chromium</subject><subject>Control engineering</subject><subject>Ferroalloy</subject><subject>Forecast</subject><subject>Iron</subject><subject>Neural networks</subject><subject>Predictive models</subject><subject>Steel</subject><subject>Temperature control</subject><subject>Temperature distribution</subject><subject>Wavelet Neural Network</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>1424451817</isbn><isbn>9781424451814</isbn><isbn>1424451825</isbn><isbn>9781424451821</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMtuwjAURN0HUoHyAVU3_oFQP65je4lCXxISG7rpBjnkuk0JMXJcEH_fSEXtbI5mRprFEHLH2ZRzZh-KYl5MBeutAmtyYy_IiIMAUNwIdUmG3ILJLIC--i-4vv4rpB2QkWDMWglS8hsy6bov1guU4FoPyfvqEym21T7UbaI-RNy4LtHg6Ww5p10KB6QeYwyuacKpDxCbbOe2dftBS9dhRUNLj-6ADSba4nd0TY90DHF7SwbeNR1OzhyTt6fHVfGSLZbPr8VskdVcq5TlSpeojBa6AmMrwZSSWohSCWcZB883Mhe58tYxdBuJpmSllCxnXgNYruSY3P_u1oi43sd65-JpfT5M_gA9SVfa</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Yangxiao Hong</creator><creator>Xu Jing</creator><creator>Yanghong Tao</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>The endpoint forecast of AOD stove ferroalloy steel-making based on wavelet neural network</title><author>Yangxiao Hong ; Xu Jing ; Yanghong Tao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-657be58727d489d20553722b52a9014f1c36265f9a0eac3e8b0b33060f7449153</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>AOD Stove</topic><topic>Argon</topic><topic>Biological neural networks</topic><topic>Chromium</topic><topic>Control engineering</topic><topic>Ferroalloy</topic><topic>Forecast</topic><topic>Iron</topic><topic>Neural networks</topic><topic>Predictive models</topic><topic>Steel</topic><topic>Temperature control</topic><topic>Temperature distribution</topic><topic>Wavelet Neural Network</topic><toplevel>online_resources</toplevel><creatorcontrib>Yangxiao Hong</creatorcontrib><creatorcontrib>Xu Jing</creatorcontrib><creatorcontrib>Yanghong Tao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yangxiao Hong</au><au>Xu Jing</au><au>Yanghong Tao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>The endpoint forecast of AOD stove ferroalloy steel-making based on wavelet neural network</atitle><btitle>2010 Chinese Control and Decision Conference</btitle><stitle>CCDC</stitle><date>2010-05</date><risdate>2010</risdate><spage>2882</spage><epage>2886</epage><pages>2882-2886</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>1424451817</isbn><isbn>9781424451814</isbn><eisbn>1424451825</eisbn><eisbn>9781424451821</eisbn><abstract>The AOD stove ferroalloy steel-making endpoint temperature and the ingredient are the control objectives of AOD stove ferroalloy steel-making, which has serious nonlinear relations with variables such as oxygen blown quantity and the quantity of molten steel and is unable to measure continuously online. This article develops a set of AOD stove smelt ferroalloy end-point control model based on the wavelet neural network and some actual data of a 180t AOD ferroalloy stove in Jilin Ferroalloy Factory to conduct the model verification research. By forecasting the end-point temperature and the carbon content and gathering the spot operating data and the practical application, we can see that the double hit probability of carbon and temperature reaches above 80%.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2010.5498689</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-9439
ispartof 2010 Chinese Control and Decision Conference, 2010, p.2882-2886
issn 1948-9439
1948-9447
language eng
recordid cdi_ieee_primary_5498689
source IEEE Electronic Library (IEL) Conference Proceedings
subjects AOD Stove
Argon
Biological neural networks
Chromium
Control engineering
Ferroalloy
Forecast
Iron
Neural networks
Predictive models
Steel
Temperature control
Temperature distribution
Wavelet Neural Network
title The endpoint forecast of AOD stove ferroalloy steel-making based on wavelet neural network
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T19%3A45%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=The%20endpoint%20forecast%20of%20AOD%20stove%20ferroalloy%20steel-making%20based%20on%20wavelet%20neural%20network&rft.btitle=2010%20Chinese%20Control%20and%20Decision%20Conference&rft.au=Yangxiao%20Hong&rft.date=2010-05&rft.spage=2882&rft.epage=2886&rft.pages=2882-2886&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=1424451817&rft.isbn_list=9781424451814&rft_id=info:doi/10.1109/CCDC.2010.5498689&rft_dat=%3Cieee_6IE%3E5498689%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424451825&rft.eisbn_list=9781424451821&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5498689&rfr_iscdi=true