Reliable gait planning for a quadruped walking robot

Presents a method for designing reliable gaits for structural symmetrical quadruped robot capable of performing statically stable, omnidirectional walking on irregular terrain. Robot's virtual model is constructed and a control algorithm is proposed by applying virtual components at some strate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Huai Chuangfeng, Liu Pingan
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1787
container_issue
container_start_page 1783
container_title
container_volume
creator Huai Chuangfeng
Liu Pingan
description Presents a method for designing reliable gaits for structural symmetrical quadruped robot capable of performing statically stable, omnidirectional walking on irregular terrain. Robot's virtual model is constructed and a control algorithm is proposed by applying virtual components at some strategic locations. At the joint control level of the proposed gait control, sample-based interpolation makes the joint trajectory tractable for the small motor and controller of the miniaturized robot. Centroid body sway ensures walking stability to achieve reliability of the proposed gaits at the motion planning level. Simulation results are presented to show the system's efficiency and stability in adapting to an uncertain terrain.
doi_str_mv 10.1109/CCDC.2010.5498555
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5498555</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5498555</ieee_id><sourcerecordid>5498555</sourcerecordid><originalsourceid>FETCH-LOGICAL-i175t-68e84200a7f4416b799cadf854bab316efcc401c7f0c30207fb383fcc218bfc33</originalsourceid><addsrcrecordid>eNpFUF9LwzAcjH8GbnMfQHzJF-jML_mlSR6lTicMBNHnkaTJiNa2th3it7ficPdy3B3cwRFyBWwJwMxNUdwVS85GKdFoKeUJmQFyRAmay1MyBYM6M4jq7BiAOv8PhJmQGWfMGIFCwAVZ9P0bG4GSg1JTgs-hStZVge5sGmhb2bpO9Y7GpqOWfu5t2e3bUNIvW73_-l3jmuGSTKKt-rA48Jy83q9einW2eXp4LG43WQIlhyzXQeM4blVEhNwpY7wto5borBOQh-g9MvAqMi8YZyo6ocVoctAueiHm5PqvN4UQtm2XPmz3vT1cIX4AXDVLMw</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Reliable gait planning for a quadruped walking robot</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Huai Chuangfeng ; Liu Pingan</creator><creatorcontrib>Huai Chuangfeng ; Liu Pingan</creatorcontrib><description>Presents a method for designing reliable gaits for structural symmetrical quadruped robot capable of performing statically stable, omnidirectional walking on irregular terrain. Robot's virtual model is constructed and a control algorithm is proposed by applying virtual components at some strategic locations. At the joint control level of the proposed gait control, sample-based interpolation makes the joint trajectory tractable for the small motor and controller of the miniaturized robot. Centroid body sway ensures walking stability to achieve reliability of the proposed gaits at the motion planning level. Simulation results are presented to show the system's efficiency and stability in adapting to an uncertain terrain.</description><identifier>ISSN: 1948-9439</identifier><identifier>ISBN: 1424451817</identifier><identifier>ISBN: 9781424451814</identifier><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 1424451825</identifier><identifier>EISBN: 9781424451821</identifier><identifier>DOI: 10.1109/CCDC.2010.5498555</identifier><identifier>LCCN: 2009934331</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chaos ; Contact Force ; Control systems ; Delay ; Design methodology ; Differential equations ; Disruption tolerant networking ; Friction Pyramid ; Legged locomotion ; Nonlinear control systems ; Oscillators ; Quadruped walking ; Stability criteria ; Structural symmetrical ; Virtual leg</subject><ispartof>2010 Chinese Control and Decision Conference, 2010, p.1783-1787</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5498555$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5498555$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huai Chuangfeng</creatorcontrib><creatorcontrib>Liu Pingan</creatorcontrib><title>Reliable gait planning for a quadruped walking robot</title><title>2010 Chinese Control and Decision Conference</title><addtitle>CCDC</addtitle><description>Presents a method for designing reliable gaits for structural symmetrical quadruped robot capable of performing statically stable, omnidirectional walking on irregular terrain. Robot's virtual model is constructed and a control algorithm is proposed by applying virtual components at some strategic locations. At the joint control level of the proposed gait control, sample-based interpolation makes the joint trajectory tractable for the small motor and controller of the miniaturized robot. Centroid body sway ensures walking stability to achieve reliability of the proposed gaits at the motion planning level. Simulation results are presented to show the system's efficiency and stability in adapting to an uncertain terrain.</description><subject>Chaos</subject><subject>Contact Force</subject><subject>Control systems</subject><subject>Delay</subject><subject>Design methodology</subject><subject>Differential equations</subject><subject>Disruption tolerant networking</subject><subject>Friction Pyramid</subject><subject>Legged locomotion</subject><subject>Nonlinear control systems</subject><subject>Oscillators</subject><subject>Quadruped walking</subject><subject>Stability criteria</subject><subject>Structural symmetrical</subject><subject>Virtual leg</subject><issn>1948-9439</issn><issn>1948-9447</issn><isbn>1424451817</isbn><isbn>9781424451814</isbn><isbn>1424451825</isbn><isbn>9781424451821</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFUF9LwzAcjH8GbnMfQHzJF-jML_mlSR6lTicMBNHnkaTJiNa2th3it7ficPdy3B3cwRFyBWwJwMxNUdwVS85GKdFoKeUJmQFyRAmay1MyBYM6M4jq7BiAOv8PhJmQGWfMGIFCwAVZ9P0bG4GSg1JTgs-hStZVge5sGmhb2bpO9Y7GpqOWfu5t2e3bUNIvW73_-l3jmuGSTKKt-rA48Jy83q9einW2eXp4LG43WQIlhyzXQeM4blVEhNwpY7wto5borBOQh-g9MvAqMi8YZyo6ocVoctAueiHm5PqvN4UQtm2XPmz3vT1cIX4AXDVLMw</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Huai Chuangfeng</creator><creator>Liu Pingan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>Reliable gait planning for a quadruped walking robot</title><author>Huai Chuangfeng ; Liu Pingan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i175t-68e84200a7f4416b799cadf854bab316efcc401c7f0c30207fb383fcc218bfc33</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Chaos</topic><topic>Contact Force</topic><topic>Control systems</topic><topic>Delay</topic><topic>Design methodology</topic><topic>Differential equations</topic><topic>Disruption tolerant networking</topic><topic>Friction Pyramid</topic><topic>Legged locomotion</topic><topic>Nonlinear control systems</topic><topic>Oscillators</topic><topic>Quadruped walking</topic><topic>Stability criteria</topic><topic>Structural symmetrical</topic><topic>Virtual leg</topic><toplevel>online_resources</toplevel><creatorcontrib>Huai Chuangfeng</creatorcontrib><creatorcontrib>Liu Pingan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huai Chuangfeng</au><au>Liu Pingan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Reliable gait planning for a quadruped walking robot</atitle><btitle>2010 Chinese Control and Decision Conference</btitle><stitle>CCDC</stitle><date>2010-05</date><risdate>2010</risdate><spage>1783</spage><epage>1787</epage><pages>1783-1787</pages><issn>1948-9439</issn><eissn>1948-9447</eissn><isbn>1424451817</isbn><isbn>9781424451814</isbn><eisbn>1424451825</eisbn><eisbn>9781424451821</eisbn><abstract>Presents a method for designing reliable gaits for structural symmetrical quadruped robot capable of performing statically stable, omnidirectional walking on irregular terrain. Robot's virtual model is constructed and a control algorithm is proposed by applying virtual components at some strategic locations. At the joint control level of the proposed gait control, sample-based interpolation makes the joint trajectory tractable for the small motor and controller of the miniaturized robot. Centroid body sway ensures walking stability to achieve reliability of the proposed gaits at the motion planning level. Simulation results are presented to show the system's efficiency and stability in adapting to an uncertain terrain.</abstract><pub>IEEE</pub><doi>10.1109/CCDC.2010.5498555</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1948-9439
ispartof 2010 Chinese Control and Decision Conference, 2010, p.1783-1787
issn 1948-9439
1948-9447
language eng
recordid cdi_ieee_primary_5498555
source IEEE Electronic Library (IEL) Conference Proceedings
subjects Chaos
Contact Force
Control systems
Delay
Design methodology
Differential equations
Disruption tolerant networking
Friction Pyramid
Legged locomotion
Nonlinear control systems
Oscillators
Quadruped walking
Stability criteria
Structural symmetrical
Virtual leg
title Reliable gait planning for a quadruped walking robot
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T13%3A40%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Reliable%20gait%20planning%20for%20a%20quadruped%20walking%20robot&rft.btitle=2010%20Chinese%20Control%20and%20Decision%20Conference&rft.au=Huai%20Chuangfeng&rft.date=2010-05&rft.spage=1783&rft.epage=1787&rft.pages=1783-1787&rft.issn=1948-9439&rft.eissn=1948-9447&rft.isbn=1424451817&rft.isbn_list=9781424451814&rft_id=info:doi/10.1109/CCDC.2010.5498555&rft_dat=%3Cieee_6IE%3E5498555%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424451825&rft.eisbn_list=9781424451821&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5498555&rfr_iscdi=true