Constraints on autonomous use of standard GPU components for asynchronous observations and intrusion detection

The high computational power of graphics processing units (GPU) is used for several purposes nowadays. Factoring integers, computing discrete logarithms, and pattern matching in network intrusion detection systems (IDS) are popular tasks in the field of information security where GPUs are used for a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Hauptverfasser: Riedmüller, Reinhard, Seeger, Mark M, Baier, Harald, Busch, Christoph, Wolthusen, Stephen D
Format: Tagungsbericht
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 8
container_issue
container_start_page 1
container_title
container_volume
creator Riedmüller, Reinhard
Seeger, Mark M
Baier, Harald
Busch, Christoph
Wolthusen, Stephen D
description The high computational power of graphics processing units (GPU) is used for several purposes nowadays. Factoring integers, computing discrete logarithms, and pattern matching in network intrusion detection systems (IDS) are popular tasks in the field of information security where GPUs are used for acceleration. GPUs are commodity components and are widely available in computer systems which would make them an ideal platform for a wide-spread IDS. We investigate the feasibility to use current GPUs for asynchronous host intrusion detection as proposed in a former work and come to the conclusion that several constraints of GPUs limit the use for concurrent and asynchronous off-CPU processing in host IDSs. GPUs have restrictions in terms of continuity, asynchronism, and unrestricted access to perform this task. We propose an observation mechanism and discuss current constraints on autonomous use of standard GPU components for intrusion detection. Finally, we come to the conclusion that several modifications to graphics cards are necessary to enable our approach.
doi_str_mv 10.1109/IWSCN.2010.5497999
format Conference Proceeding
fullrecord <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_5497999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5497999</ieee_id><sourcerecordid>5497999</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-6fa65073d12164810a84e8c7954c55b60e5ad7f6e267346c0aefcda935a99f643</originalsourceid><addsrcrecordid>eNpFkMFKAzEQhiMiqLUvoJe8wNYkm2Q3R1m0LRQVrHgs0-wEV2xSkqzQtzfFgnMZPub_v8MQcsvZjHNm7pcfb93zTLDCSprGGHNGrrkUUmpTG3H-D628JNOUvlgZqYTm-or4LviUIww-Jxo8hTEHH3ZhTHRMSIOjKYPvIfZ0_vpObdjtg8dj2IVIIR28_YylUfJhmzD-QB6KkZYOLc44poK0x4z2eLghFw6-E05Pe0LWT4_rblGtXubL7mFVDYblSjvQijV1zwXXsuUMWomtbYySVqmtZqigb5xGoZtaassAne3B1AqMcVrWE3L3px0QcbOPww7iYXN6T_0Lad9cVA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Constraints on autonomous use of standard GPU components for asynchronous observations and intrusion detection</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Riedmüller, Reinhard ; Seeger, Mark M ; Baier, Harald ; Busch, Christoph ; Wolthusen, Stephen D</creator><creatorcontrib>Riedmüller, Reinhard ; Seeger, Mark M ; Baier, Harald ; Busch, Christoph ; Wolthusen, Stephen D</creatorcontrib><description>The high computational power of graphics processing units (GPU) is used for several purposes nowadays. Factoring integers, computing discrete logarithms, and pattern matching in network intrusion detection systems (IDS) are popular tasks in the field of information security where GPUs are used for acceleration. GPUs are commodity components and are widely available in computer systems which would make them an ideal platform for a wide-spread IDS. We investigate the feasibility to use current GPUs for asynchronous host intrusion detection as proposed in a former work and come to the conclusion that several constraints of GPUs limit the use for concurrent and asynchronous off-CPU processing in host IDSs. GPUs have restrictions in terms of continuity, asynchronism, and unrestricted access to perform this task. We propose an observation mechanism and discuss current constraints on autonomous use of standard GPU components for intrusion detection. Finally, we come to the conclusion that several modifications to graphics cards are necessary to enable our approach.</description><identifier>ISBN: 1424469384</identifier><identifier>ISBN: 9781424469383</identifier><identifier>EISBN: 1424469392</identifier><identifier>EISBN: 9781424469390</identifier><identifier>DOI: 10.1109/IWSCN.2010.5497999</identifier><language>eng</language><publisher>IEEE</publisher><subject>asynchronous memory access ; Computer graphics ; Concurrent computing ; constraints ; coprocessor ; Coprocessors ; CUDA ; DMA ; Educational institutions ; GPU ; graphics card ; Graphics processing unit ; Host intrusion detection system ; IDS ; Information security ; Intrusion detection ; Laboratories ; Mathematics ; Monitoring</subject><ispartof>2010 2nd International Workshop on Security and Communication Networks (IWSCN), 2010, p.1-8</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5497999$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,2051,27904,54898</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/5497999$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Riedmüller, Reinhard</creatorcontrib><creatorcontrib>Seeger, Mark M</creatorcontrib><creatorcontrib>Baier, Harald</creatorcontrib><creatorcontrib>Busch, Christoph</creatorcontrib><creatorcontrib>Wolthusen, Stephen D</creatorcontrib><title>Constraints on autonomous use of standard GPU components for asynchronous observations and intrusion detection</title><title>2010 2nd International Workshop on Security and Communication Networks (IWSCN)</title><addtitle>IWSCN</addtitle><description>The high computational power of graphics processing units (GPU) is used for several purposes nowadays. Factoring integers, computing discrete logarithms, and pattern matching in network intrusion detection systems (IDS) are popular tasks in the field of information security where GPUs are used for acceleration. GPUs are commodity components and are widely available in computer systems which would make them an ideal platform for a wide-spread IDS. We investigate the feasibility to use current GPUs for asynchronous host intrusion detection as proposed in a former work and come to the conclusion that several constraints of GPUs limit the use for concurrent and asynchronous off-CPU processing in host IDSs. GPUs have restrictions in terms of continuity, asynchronism, and unrestricted access to perform this task. We propose an observation mechanism and discuss current constraints on autonomous use of standard GPU components for intrusion detection. Finally, we come to the conclusion that several modifications to graphics cards are necessary to enable our approach.</description><subject>asynchronous memory access</subject><subject>Computer graphics</subject><subject>Concurrent computing</subject><subject>constraints</subject><subject>coprocessor</subject><subject>Coprocessors</subject><subject>CUDA</subject><subject>DMA</subject><subject>Educational institutions</subject><subject>GPU</subject><subject>graphics card</subject><subject>Graphics processing unit</subject><subject>Host intrusion detection system</subject><subject>IDS</subject><subject>Information security</subject><subject>Intrusion detection</subject><subject>Laboratories</subject><subject>Mathematics</subject><subject>Monitoring</subject><isbn>1424469384</isbn><isbn>9781424469383</isbn><isbn>1424469392</isbn><isbn>9781424469390</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2010</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><sourceid>RIE</sourceid><recordid>eNpFkMFKAzEQhiMiqLUvoJe8wNYkm2Q3R1m0LRQVrHgs0-wEV2xSkqzQtzfFgnMZPub_v8MQcsvZjHNm7pcfb93zTLDCSprGGHNGrrkUUmpTG3H-D628JNOUvlgZqYTm-or4LviUIww-Jxo8hTEHH3ZhTHRMSIOjKYPvIfZ0_vpObdjtg8dj2IVIIR28_YylUfJhmzD-QB6KkZYOLc44poK0x4z2eLghFw6-E05Pe0LWT4_rblGtXubL7mFVDYblSjvQijV1zwXXsuUMWomtbYySVqmtZqigb5xGoZtaassAne3B1AqMcVrWE3L3px0QcbOPww7iYXN6T_0Lad9cVA</recordid><startdate>201005</startdate><enddate>201005</enddate><creator>Riedmüller, Reinhard</creator><creator>Seeger, Mark M</creator><creator>Baier, Harald</creator><creator>Busch, Christoph</creator><creator>Wolthusen, Stephen D</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>201005</creationdate><title>Constraints on autonomous use of standard GPU components for asynchronous observations and intrusion detection</title><author>Riedmüller, Reinhard ; Seeger, Mark M ; Baier, Harald ; Busch, Christoph ; Wolthusen, Stephen D</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-6fa65073d12164810a84e8c7954c55b60e5ad7f6e267346c0aefcda935a99f643</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2010</creationdate><topic>asynchronous memory access</topic><topic>Computer graphics</topic><topic>Concurrent computing</topic><topic>constraints</topic><topic>coprocessor</topic><topic>Coprocessors</topic><topic>CUDA</topic><topic>DMA</topic><topic>Educational institutions</topic><topic>GPU</topic><topic>graphics card</topic><topic>Graphics processing unit</topic><topic>Host intrusion detection system</topic><topic>IDS</topic><topic>Information security</topic><topic>Intrusion detection</topic><topic>Laboratories</topic><topic>Mathematics</topic><topic>Monitoring</topic><toplevel>online_resources</toplevel><creatorcontrib>Riedmüller, Reinhard</creatorcontrib><creatorcontrib>Seeger, Mark M</creatorcontrib><creatorcontrib>Baier, Harald</creatorcontrib><creatorcontrib>Busch, Christoph</creatorcontrib><creatorcontrib>Wolthusen, Stephen D</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Riedmüller, Reinhard</au><au>Seeger, Mark M</au><au>Baier, Harald</au><au>Busch, Christoph</au><au>Wolthusen, Stephen D</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Constraints on autonomous use of standard GPU components for asynchronous observations and intrusion detection</atitle><btitle>2010 2nd International Workshop on Security and Communication Networks (IWSCN)</btitle><stitle>IWSCN</stitle><date>2010-05</date><risdate>2010</risdate><spage>1</spage><epage>8</epage><pages>1-8</pages><isbn>1424469384</isbn><isbn>9781424469383</isbn><eisbn>1424469392</eisbn><eisbn>9781424469390</eisbn><abstract>The high computational power of graphics processing units (GPU) is used for several purposes nowadays. Factoring integers, computing discrete logarithms, and pattern matching in network intrusion detection systems (IDS) are popular tasks in the field of information security where GPUs are used for acceleration. GPUs are commodity components and are widely available in computer systems which would make them an ideal platform for a wide-spread IDS. We investigate the feasibility to use current GPUs for asynchronous host intrusion detection as proposed in a former work and come to the conclusion that several constraints of GPUs limit the use for concurrent and asynchronous off-CPU processing in host IDSs. GPUs have restrictions in terms of continuity, asynchronism, and unrestricted access to perform this task. We propose an observation mechanism and discuss current constraints on autonomous use of standard GPU components for intrusion detection. Finally, we come to the conclusion that several modifications to graphics cards are necessary to enable our approach.</abstract><pub>IEEE</pub><doi>10.1109/IWSCN.2010.5497999</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier ISBN: 1424469384
ispartof 2010 2nd International Workshop on Security and Communication Networks (IWSCN), 2010, p.1-8
issn
language eng
recordid cdi_ieee_primary_5497999
source IEEE Electronic Library (IEL) Conference Proceedings
subjects asynchronous memory access
Computer graphics
Concurrent computing
constraints
coprocessor
Coprocessors
CUDA
DMA
Educational institutions
GPU
graphics card
Graphics processing unit
Host intrusion detection system
IDS
Information security
Intrusion detection
Laboratories
Mathematics
Monitoring
title Constraints on autonomous use of standard GPU components for asynchronous observations and intrusion detection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T18%3A10%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Constraints%20on%20autonomous%20use%20of%20standard%20GPU%20components%20for%20asynchronous%20observations%20and%20intrusion%20detection&rft.btitle=2010%202nd%20International%20Workshop%20on%20Security%20and%20Communication%20Networks%20(IWSCN)&rft.au=Riedmu%CC%88ller,%20Reinhard&rft.date=2010-05&rft.spage=1&rft.epage=8&rft.pages=1-8&rft.isbn=1424469384&rft.isbn_list=9781424469383&rft_id=info:doi/10.1109/IWSCN.2010.5497999&rft_dat=%3Cieee_6IE%3E5497999%3C/ieee_6IE%3E%3Curl%3E%3C/url%3E&rft.eisbn=1424469392&rft.eisbn_list=9781424469390&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=5497999&rfr_iscdi=true